Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy Chadburn is active.

Publication


Featured researches published by Amy Chadburn.


Nature Medicine | 2001

Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth.

David Lyden; Koichi Hattori; Sergio Dias; Carla Costa; Pamela Blaikie; Linda Butros; Amy Chadburn; Beate Heissig; Willy Marks; Larry Witte; Yan Wu; Daniel J. Hicklin; Zhenping Zhu; Neil R. Hackett; Ronald G. Crystal; Malcolm A. S. Moore; Katherine A. Hajjar; Katia Manova; Robert Benezra; Shahin Rafii

The role of bone marrow (BM)-derived precursor cells in tumor angiogenesis is not known. We demonstrate here that tumor angiogenesis is associated with recruitment of hematopoietic and circulating endothelial precursor cells (CEPs). We used the angiogenic defective, tumor resistant Id-mutant mice to show that transplantation of wild-type BM or vascular endothelial growth factor (VEGF)-mobilized stem cells restore tumor angiogenesis and growth. We detected donor-derived CEPs throughout the neovessels of tumors and Matrigel-plugs in an Id1+/−Id3−/− host, which were associated with VEGF-receptor-1–positive (VEGFR1+) myeloid cells. The angiogenic defect in Id-mutant mice was due to impaired VEGF-driven mobilization of VEGFR2+ CEPs and impaired proliferation and incorporation of VEGFR1+ cells. Although targeting of either VEGFR1 or VEGFR2 alone partially blocks the growth of tumors, inhibition of both VEGFR1 and VEGFR2 was necessary to completely ablate tumor growth. These data demonstrate that recruitment of VEGF-responsive BM-derived precursors is necessary and sufficient for tumor angiogenesis and suggest new clinical strategies to block tumor growth.


Journal of Clinical Investigation | 2008

CD133 expression is not restricted to stem cells, and both CD133+ and CD133– metastatic colon cancer cells initiate tumors

Sergey V. Shmelkov; Jason M. Butler; Andrea T. Hooper; Adília Hormigo; Jared S Kushner; Till Milde; Ryan St Clair; Muhamed Baljevic; Ian White; David K. Jin; Amy Chadburn; Andrew J. Murphy; David M. Valenzuela; Nicholas W. Gale; Gavin Thurston; George D. Yancopoulos; Michael I. D’Angelica; Nancy E. Kemeny; David Lyden; Shahin Rafii

Colon cancer stem cells are believed to originate from a rare population of putative CD133+ intestinal stem cells. Recent publications suggest that a small subset of colon cancer cells expresses CD133, and that only these CD133+ cancer cells are capable of tumor initiation. However, the precise contribution of CD133+ tumor-initiating cells in mediating colon cancer metastasis remains unknown. Therefore, to temporally and spatially track the expression of CD133 in adult mice and during tumorigenesis, we generated a knockin lacZ reporter mouse (CD133lacZ/+), in which the expression of lacZ is driven by the endogenous CD133 promoters. Using this model and immunostaining, we discovered that CD133 expression in colon is not restricted to stem cells; on the contrary, CD133 is ubiquitously expressed on differentiated colonic epithelium in both adult mice and humans. Using Il10-/-CD133lacZ mice, in which chronic inflammation in colon leads to adenocarcinomas, we demonstrated that CD133 is expressed on a full gamut of colonic tumor cells, which express epithelial cell adhesion molecule (EpCAM). Similarly, CD133 is widely expressed by human primary colon cancer epithelial cells, whereas the CD133- population is composed mostly of stromal and inflammatory cells. Conversely, CD133 expression does not identify the entire population of epithelial and tumor-initiating cells in human metastatic colon cancer. Indeed, both CD133+ and CD133- metastatic tumor subpopulations formed colonospheres in in vitro cultures and were capable of long-term tumorigenesis in a NOD/SCID serial xenotransplantation model. Moreover, metastatic CD133- cells form more aggressive tumors and express typical phenotypic markers of cancer-initiating cells, including CD44 (CD44+CD24-), whereas the CD133+ fraction is composed of CD44lowCD24+ cells. Collectively, our data suggest that CD133 expression is not restricted to intestinal stem or cancer-initiating cells, and during the metastatic transition, CD133+ tumor cells might give rise to the more aggressive CD133(- )subset, which is also capable of tumor initiation in NOD/SCID mice.


Nature | 2009

Mutations of multiple genes cause deregulation of NF-kB in diffuse large B-cell lymphoma

Mara Compagno; Wei Keat Lim; Adina Grunn; Subhadra V. Nandula; Manisha Brahmachary; Qiong Shen; Francesco Bertoni; Maurilio Ponzoni; Marta Scandurra; Govind Bhagat; Amy Chadburn; Riccardo Dalla-Favera; Laura Pasqualucci

Diffuse large B-cell lymphoma (DLBCL), the most common form of lymphoma in adulthood, comprises multiple biologically and clinically distinct subtypes including germinal centre B-cell-like (GCB) and activated B-cell-like (ABC) DLBCL. Gene expression profile studies have shown that its most aggressive subtype, ABC-DLBCL, is associated with constitutive activation of the NF-κB transcription complex. However, except for a small fraction of cases, it remains unclear whether NF-κB activation in these tumours represents an intrinsic program of the tumour cell of origin or a pathogenetic event. Here we show that >50% of ABC-DLBCL and a smaller fraction of GCB-DLBCL carry somatic mutations in multiple genes, including negative (TNFAIP3, also called A20) and positive (CARD11, TRAF2, TRAF5, MAP3K7 (TAK1) and TNFRSF11A (RANK)) regulators of NF-κB. Of these, the A20 gene, which encodes a ubiquitin-modifying enzyme involved in termination of NF-κB responses, is most commonly affected, with ∼30% of patients displaying biallelic inactivation by mutations and/or deletions. When reintroduced in cell lines carrying biallelic inactivation of the gene, A20 induced apoptosis and cell growth arrest, indicating a tumour suppressor role. Less frequently, missense mutations of TRAF2 and CARD11 produce molecules with significantly enhanced ability to activate NF-κB. Thus, our results demonstrate that NF-κB activation in DLBCL is caused by genetic lesions affecting multiple genes, the loss or activation of which may promote lymphomagenesis by leading to abnormally prolonged NF-κB responses.


Nature Genetics | 2011

Analysis of the coding genome of diffuse large B-cell lymphoma

Laura Pasqualucci; Vladimir Trifonov; Giulia Fabbri; Jing Ma; Davide Rossi; Annalisa Chiarenza; Victoria A. Wells; Adina Grunn; Monica Messina; Oliver Elliot; Joseph Chan; Govind Bhagat; Amy Chadburn; Gianluca Gaidano; Charles G. Mullighan; Raul Rabadan; Riccardo Dalla-Favera

Diffuse large B-cell lymphoma (DLBCL) is the most common form of human lymphoma. Although a number of structural alterations have been associated with the pathogenesis of this malignancy, the full spectrum of genetic lesions that are present in the DLBCL genome, and therefore the identity of dysregulated cellular pathways, remains unknown. By combining next-generation sequencing and copy number analysis, we show that the DLBCL coding genome contains, on average, more than 30 clonally represented gene alterations per case. This analysis also revealed mutations in genes not previously implicated in DLBCL pathogenesis, including those regulating chromatin methylation (MLL2; 24% of samples) and immune recognition by T cells. These results provide initial data on the complexity of the DLBCL coding genome and identify novel dysregulated pathways underlying its pathogenesis.


Nature | 2011

Inactivating mutations of acetyltransferase genes in B-cell lymphoma.

Laura Pasqualucci; David Dominguez-Sola; Annalisa Chiarenza; Giulia Fabbri; Adina Grunn; Vladimir Trifonov; Lawryn H. Kasper; Stephanie Lerach; Hongyan Tang; Jing Ma; Davide Rossi; Amy Chadburn; Vundavalli V. Murty; Charles G. Mullighan; Gianluca Gaidano; Raul Rabadan; Paul K. Brindle; Riccardo Dalla-Favera

B-cell non-Hodgkin’s lymphoma comprises biologically and clinically distinct diseases the pathogenesis of which is associated with genetic lesions affecting oncogenes and tumour-suppressor genes. We report here that the two most common types—follicular lymphoma and diffuse large B-cell lymphoma—harbour frequent structural alterations inactivating CREBBP and, more rarely, EP300, two highly related histone and non-histone acetyltransferases (HATs) that act as transcriptional co-activators in multiple signalling pathways. Overall, about 39% of diffuse large B-cell lymphoma and 41% of follicular lymphoma cases display genomic deletions and/or somatic mutations that remove or inactivate the HAT coding domain of these two genes. These lesions usually affect one allele, suggesting that reduction in HAT dosage is important for lymphomagenesis. We demonstrate specific defects in acetylation-mediated inactivation of the BCL6 oncoprotein and activation of the p53 tumour suppressor. These results identify CREBBP/EP300 mutations as a major pathogenetic mechanism shared by common forms of B-cell non-Hodgkin’s lymphoma, with direct implications for the use of drugs targeting acetylation/deacetylation mechanisms.


Journal of Clinical Investigation | 2000

Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration.

Sergio Dias; Koichi Hattori; Zhenping Zhu; Beate Heissig; Margaret Choy; William J. Lane; Yan Wu; Amy Chadburn; Elizabeth Hyjek; Muhammad Gill; Daniel J. Hicklin; Larry Witte; Malcom A. S. Moore; Shahin Rafii

Emerging data suggest that VEGF receptors are expressed by endothelial cells as well as hematopoietic stem cells. Therefore, we hypothesized that functional VEGF receptors may also be expressed in malignant counterparts of hematopoietic stem cells such as leukemias. We demonstrate that certain leukemias not only produce VEGF but also express functional VEGFR-2 in vivo and in vitro, resulting in the generation of an autocrine loop that may support leukemic cell survival and proliferation. Approximately 50% of freshly isolated leukemias expressed mRNA and protein for VEGFR-2. VEGF(165) induced phosphorylation of VEGFR-2 and increased proliferation of leukemic cells, demonstrating these receptors were functional. VEGF(165) also induced the expression of MMP-9 by leukemic cells and promoted their migration through reconstituted basement membrane. The neutralizing mAb IMC-1C11, specific to human VEGFR-2, inhibited leukemic cell survival in vitro and blocked VEGF(165)-mediated proliferation of leukemic cells and VEGF-induced leukemic cell migration. Xenotransplantation of primary leukemias and leukemic cell lines into immunocompromised nonobese diabetic mice resulted in significant elevation of human, but not murine, VEGF in plasma and death of inoculated mice within 3 weeks. Injection of IMC-1C11 inhibited proliferation of xenotransplanted human leukemias and significantly increased the survival of inoculated mice. Interruption of signaling by VEGFRs, particularly VEGFR-2, may provide a novel strategy for inhibiting leukemic cell proliferation.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genetic heterogeneity of diffuse large B-cell lymphoma

Jenny Zhang; Vladimir Grubor; Cassandra Love; Anjishnu Banerjee; Kristy L. Richards; Piotr A. Mieczkowski; Cherie H. Dunphy; William W.L. Choi; Wing Y. Au; Gopesh Srivastava; Patricia L. Lugar; David A. Rizzieri; Anand S. Lagoo; Leon Bernal-Mizrachi; Karen P. Mann; Christopher R. Flowers; Kikkeri N. Naresh; Andrew M. Evens; Leo I. Gordon; Magdalena Czader; Javed Gill; Eric D. Hsi; Qingquan Liu; Alice Fan; Katherine Walsh; Dereje D. Jima; Lisa L. Smith; Amy J. Johnson; John C. Byrd; Micah A. Luftig

Diffuse large B-cell lymphoma (DLBCL) is the most common form of lymphoma in adults. The disease exhibits a striking heterogeneity in gene expression profiles and clinical outcomes, but its genetic causes remain to be fully defined. Through whole genome and exome sequencing, we characterized the genetic diversity of DLBCL. In all, we sequenced 73 DLBCL primary tumors (34 with matched normal DNA). Separately, we sequenced the exomes of 21 DLBCL cell lines. We identified 322 DLBCL cancer genes that were recurrently mutated in primary DLBCLs. We identified recurrent mutations implicating a number of known and not previously identified genes and pathways in DLBCL including those related to chromatin modification (ARID1A and MEF2B), NF-κB (CARD11 and TNFAIP3), PI3 kinase (PIK3CD, PIK3R1, and MTOR), B-cell lineage (IRF8, POU2F2, and GNA13), and WNT signaling (WIF1). We also experimentally validated a mutation in PIK3CD, a gene not previously implicated in lymphomas. The patterns of mutation demonstrated a classic long tail distribution with substantial variation of mutated genes from patient to patient and also between published studies. Thus, our study reveals the tremendous genetic heterogeneity that underlies lymphomas and highlights the need for personalized medicine approaches to treating these patients.


Nature Genetics | 2012

The genetic landscape of mutations in Burkitt lymphoma

Cassandra Love; Zhen Sun; Dereje D. Jima; Guojie Li; Jenny Zhang; Rodney R. Miles; Kristy L. Richards; Cherie H. Dunphy; William W.L. Choi; Gopesh Srivastava; Patricia L. Lugar; David A. Rizzieri; Anand S. Lagoo; Leon Bernal-Mizrachi; Karen P. Mann; Christopher R. Flowers; Kikkeri N. Naresh; Andrew M. Evens; Amy Chadburn; Leo I. Gordon; Magdalena Czader; Javed Gill; Eric D. Hsi; Adrienne Greenough; Andrea B. Moffitt; Matthew McKinney; Anjishnu Banerjee; Vladimir Grubor; Shawn Levy; David B. Dunson

Burkitt lymphoma is characterized by deregulation of MYC, but the contribution of other genetic mutations to the disease is largely unknown. Here, we describe the first completely sequenced genome from a Burkitt lymphoma tumor and germline DNA from the same affected individual. We further sequenced the exomes of 59 Burkitt lymphoma tumors and compared them to sequenced exomes from 94 diffuse large B-cell lymphoma (DLBCL) tumors. We identified 70 genes that were recurrently mutated in Burkitt lymphomas, including ID3, GNA13, RET, PIK3R1 and the SWI/SNF genes ARID1A and SMARCA4. Our data implicate a number of genes in cancer for the first time, including CCT6B, SALL3, FTCD and PC. ID3 mutations occurred in 34% of Burkitt lymphomas and not in DLBCLs. We show experimentally that ID3 mutations promote cell cycle progression and proliferation. Our work thus elucidates commonly occurring gene-coding mutations in Burkitt lymphoma and implicates ID3 as a new tumor suppressor gene.


Journal of Immunology | 2004

Lymphoma B Cells Evade Apoptosis through the TNF Family Members BAFF/BLyS and APRIL

Bing He; Amy Chadburn; Erin Jou; Elaine J. Schattner; Daniel M. Knowles; Andrea Cerutti

The mechanisms underlying the autonomous accumulation of malignant B cells remain elusive. We show in this study that non-Hodgkin’s lymphoma (NHL) B cells express B cell-activating factor of the TNF family (BAFF) and a proliferation-inducing ligand (APRIL), two powerful B cell-activating molecules usually expressed by myeloid cells. In addition, NHL B cells express BAFF receptor, which binds BAFF, as well as transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI) and B cell maturation Ag (BCMA), which bind both BAFF and APRIL. Neutralization of endogenous BAFF and APRIL by soluble TACI and BCMA decoy receptors attenuates the survival of NHL B cells, decreases activation of the prosurvival transcription factor NF-κB, down-regulates the antiapoptotic proteins Bcl-2 and Bcl-xL, and up-regulates the proapoptotic protein Bax. Conversely, exposure of NHL B cells to recombinant or myeloid cell-derived BAFF and APRIL attenuates apoptosis, increases NF-κB activation, up-regulates Bcl-2 and Bcl-xL, and down-regulates Bax. In some NHLs, exogenous BAFF and APRIL up-regulate c-Myc, an inducer of cell proliferation; down-regulate p53, an inhibitor of cell proliferation; and increase Bcl-6, an inhibitor of B cell differentiation. By showing that nonmalignant B cells up-regulate BAFF and APRIL upon stimulation by T cell CD40 ligand, our findings indicate that NHL B cells deregulate an otherwise physiological autocrine survival pathway to evade apoptosis. Thus, neutralization of BAFF and APRIL by soluble TACI and BCMA decoy receptors could be useful to dampen the accumulation of malignant B cells in NHL patients.


Journal of Clinical Oncology | 2003

Phase I/II Trial of Epratuzumab (Humanized Anti-CD22 Antibody) in Indolent Non-Hodgkin’s Lymphoma

John P. Leonard; Morton Coleman; Jamie Ketas; Amy Chadburn; Scott Ely; Richard R. Furman; William A. Wegener; Hans J. Hansen; Heather Ziccardi; Michael Eschenberg; Urte Gayko; Alessandra Cesano; David M. Goldenberg

PURPOSE This single-center, dose-escalation study examines the safety, efficacy, and pharmacokinetics of epratuzumab (anti-CD22 humanized monoclonal antibody) in patients with recurrent indolent non-Hodgkins lymphoma (NHL). PATIENTS AND METHODS Patients had indolent NHL and recurrent disease after at least one chemotherapy regimen. Epratuzumab was administered intravenously at 120 to 1,000 mg/m2 over 30 to 60 minutes weekly for four treatments. RESULTS Fifty-five patients received epratuzumab and were assessable for safety; 51 patients were assessable for response. Patients were heavily pretreated (50% had at least four prior regimens) and 49% had bulky disease (> or = 5 cm). Epratuzumab was well tolerated, with no dose-limiting toxicity. Circulating B cells transiently decreased without significant effects on T cells or immunoglobulin levels. More than 95% of infusions were completed in approximately 1 hour. Mean serum half-life was 23 days. Across all dose levels and histologies, nine patients (18%; 95% confidence interval, 8% to 31%) achieved objective response, including three complete responses (CRs). All responses were in patients with follicular NHL: 24% of these patients responded, including 43% in the 360 mg/m2 dose group and 27% in the 480 mg/m2 dose group. No responses were observed in other indolent histologies. Median duration of objective response was 79.3 weeks (range, 11.1 to 143.3 weeks), with median time to progression for responders of 86.6 weeks by Kaplan-Meier estimate. CONCLUSION Epratuzumab was well tolerated at up to 1,000 mg/m2/wk (for 4 weeks) and had clinical activity. One third of responding patients achieved CR. A 43% objective response rate in follicular NHL patients treated at 360 mg/m2/wk indicates that this dose should be explored in additional studies.

Collaboration


Dive into the Amy Chadburn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

April Chiu

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Cerutti

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge