Amy Courtney
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amy Courtney.
Bone | 1996
Wilson C. Hayes; Elizabeth R. Myers; Stephen Robinovitch; A. Van Den Kroonenberg; Amy Courtney; Thomas A. McMahon
Falls and fall-related injuries are among the most serious and common medical problems experienced by the elderly. Hip fracture, one of the most severe consequences of falling in the elderly, occurs in only about 1% of falls. Despite this, hip fracture accounts for a large share of the disability, death, and medical costs associated with falls. As measured by their frequency, influence on quality of life, and economic cost, hip fractures are a public health problem of crisis proportions. Without successful international initiatives aimed at reducing the incidence of falls and hip fractures, the implications for allocations of health resources in this and the next century are staggering. Identifying those at risk for harmful falls requires an understanding of what kinds of falls result in injury and fracture. In elderly persons who fall, in most of whom hip bone mineral density is already several standard deviations below peak values, fall severity (as reflected in falling to the side and impacting the hip) and body habitus are important risk factors for hip fracture and touch on a domain of risk entirely missed by knowledge of bone mineral density. These findings clearly suggest that factors related to both loading and bone fragility play important roles in the etiology of hip fracture. We provide a strategy, based on engineering approaches to fracture risk prediction, for determining the relative etiologic importance of loading and bone fragility and to summarize some of what is known about both sets of factors. We define a factor of risk, phi, as the ratio of the loads applied to the hip divided by the loads necessary to cause fracture and summarize available data on the numerator and the denominator of phi. We then provide an overview of the complex interplay between the risks associated with the initiation, descent, and impact phases of a fall, thereby suggesting an organized approach for evaluating intervention efforts being used to prevent hip fractures. The findings emphasize the continuing need for combined intervention strategies that focus on fall prevention, reductions in fall severity, and maintaining or increasing femoral bone mass and strength, either through targeted exercise programs, optimal nutrition (Ca, Vitamin D), and/or in the use of osteodynamic agents. By developing and refining the factor of risk, a property that captures both the contributions of bone density and the confounding influences of body habitus and fall severity, we believe these intervention strategies can be targeted more appropriately.
Calcified Tissue International | 1994
Amy Courtney; E. F. Wachtel; Elizabeth R. Myers; Wilson C. Hayes
Results from previous quasi-static mechanical tests indicate that femurs from elderly subjects fail in vitro at forces 50% below those available in a fall from standing height. However, bone is a rate-dependent material, and it is not known whether this imbalance is present at rates of loading which occur in a fall. Based on recent data on time to peak force and body positions at impact during simulated falls, we designed a high rate test of the femur in a loading configuration meant to represent a fall on the hip. We used elderly (mean age 73.5±7.4 (SD) years) and younger adult (32.7±12.8 years) cadaveric femurs to investigate whether (1) the strength, stiffness, and energy absorption capacity of the femur increases under high rate loading conditions; (2) elderly femurs have reduced strength, stiffness, and energy absorption capacity compared with younger adult femurs at this loading rate; and (3) densitometric and geometric measures taken at the hip correlate with the measured fracture loads. Femurs were scanned using dual-energy X-ray absorptiometry (DXA) and then tested to failure in a fall loading configuration at a displacement rate of 100 mm/second. The fracture load in elderly and younger adult femurs increased by about 20% with a 50-fold increase in displacement rate. However, energy absorption did not increase with displacement rate because of a twofold increase in stiffness at the higher loading rate. Age-related differences in strength and energy absorption capacity were consistent with those found previously for a displacement rate of 2 mm/second. There were moderate to strong correlations between fracture load and DXA variables, with the best correlation provided by cross-sectional area (r2=0.77) and bone mineral density (BMD) (r2=0.72) at the femoral neck. Our results indicate that, even at rates of loading applied during a fall, the estimated impact force in a fall on the hip is 35% greater than the average fracture load of the elderly femur. Moreover, the relationship we found between femoral neck BMD and fracture load indicates that an increase in femoral neck BMD of more than 20% would be required to raise the strength of the femur to the level of the impact load. As clinical trials of pharmacologic interventions have demonstrated increases in BMD of only a few percent at best, our results emphasize the continuing need for intervention strategies that focus on fall prevention and on reducing the severity of those falls that do occur.
Review of Scientific Instruments | 2010
Michael W. Courtney; Amy Courtney
The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.
The Physics Teacher | 2007
Michael Courtney; Amy Courtney
Potato cannon velocity can be measured with a digitized microphone signal. A microphone is attached to the potato cannon muzzle, and a potato is fired at an aluminum target about 10 m away. Flight time can be determined from the acoustic waveform by subtracting the time in the barrel and time for sound to return from the target. The potato velocity is simply flight distance divided by flight time.
Injury-international Journal of The Care of The Injured | 2008
Michael Courtney; Amy Courtney
In response to a published assertion to the contrary, this paper briefly reviews many studies that document remote wounding effects of ballistic pressure waves including experiments in pigs and dogs that find brain injury resulting from animal models shot in the thigh and case studies in humans that document both remote brain and spinal cord injuries ascribed to ballistic pressure waves.
arXiv: Medical Physics | 2007
Michael Courtney; Amy Courtney
arXiv: Medical Physics | 2007
Michael Courtney; Amy Courtney
arXiv: Medical Physics | 2007
Michael Courtney; Amy Courtney
arXiv: Popular Physics | 2007
Michael Courtney; Amy Courtney
Nature Precedings | 2008
Amy Courtney; Michael Courtney