Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy D. Bradshaw is active.

Publication


Featured researches published by Amy D. Bradshaw.


Journal of Clinical Investigation | 2001

SPARC, a matricellular protein that functions in cellular differentiation and tissue response to injury

Amy D. Bradshaw; E. Helene Sage

Expressed during many stages of development in a variety of organisms, the matricellular protein SPARC (secreted protein acidic and rich in cysteine, also known as osteonectin or BM-40) is restricted in adult vertebrates primarily to tissues that undergo consistent turnover or to sites of injury and disease (1). The capacity of SPARC to bind to several resident proteins of the ECM, to modulate growth factor efficacy, to affect the expression of matrix metalloproteinases, and to alter cell shape as a counteradhesive factor, supports the idea that SPARC acts to regulate cell interaction with the extracellular milieu during development and in response to injury (Figure ​(Figure1;1; see also ref. 1). SPARC is a member of a gene family whose members share structural similarities in one or more protein domains (1). In addition to the numerous studies in cultured cells, the function of SPARC in vivo has been examined primarily in three evolutionarily diverse organisms — Caenorhabditis elegans, Xenopus laevis, and mice. These systems have been used to study the effects of increased or inappropriate SPARC expression, as well as diminished activity resulting from the inactivation of SPARC mRNA, the blocking of protein activity, or mutation of the SPARC gene (Table ​(Table1).1). This Perspective will integrate results from studies in vitro with findings in vivo in an attempt to clarify the current information and to propose functions for SPARC in living tissues.


Journal of Biological Chemistry | 1999

SPARC Regulates the Expression of Collagen Type I and Transforming Growth Factor-β1 in Mesangial Cells

Aleksandar Francki; Amy D. Bradshaw; James A. Bassuk; Chin C. Howe; William G. Couser; E. Helene Sage

The matricellular protein SPARC is expressed at high levels in cells that participate in tissue remodeling and is thought to regulate mesangial cell proliferation and extracellular matrix production in the kidney glomerulus in a rat model of glomerulonephritis (Pichler, R. H., Bassuk, J. A., Hugo, C., Reed, M. J., Eng, E., Gordon, K. L., Pippin, J., Alpers, C. E., Couser, W. G., Sage, E. H., and Johnson, R. J. (1997) Am. J. Pathol. 148, 1153–1167). A potential mechanism by which SPARC controls both cell cycle and matrix production has been attributed to its regulation of a pleiotropic growth factor. In this study we used primary mesangial cell cultures from wild-type mice and from mice with a targeted disruption of the SPARCgene. SPARC-null cells displayed diminished expression of collagen type I mRNA and protein, relative to wild-type cells, by the criteria of immunocytochemistry, immunoblotting, and the reverse transcription-polymerase chain reaction. The SPARC-null cells also showed significantly decreased steady-state levels of transforming growth factor-β1 (TGF-β1) mRNA and secreted TGF-β1 protein. Addition of recombinant SPARC to SPARC-null cells restored the expression of collagen type I mRNA to 70% and TGF-β1 mRNA to 100% of wild-type levels. We conclude that SPARC regulates the expression of collagen type I and TGF-β1 in kidney mesangial cells. Since increased mitosis and matrix deposition by mesangial cells are characteristics of glomerulopathies, we propose that SPARC is one of the factors that maintains the balance between cell proliferation and matrix production in the glomerulus.


Circulation | 2015

Myocardial Stiffness in Patients With Heart Failure and a Preserved Ejection Fraction Contributions of Collagen and Titin

Michael R. Zile; Catalin F. Baicu; John S. Ikonomidis; Robert E. Stroud; Paul J. Nietert; Amy D. Bradshaw; Rebecca Slater; Bradley M. Palmer; Peter Van Buren; Markus Meyer; Margaret M. Redfield; David A. Bull; Henk Granzier; Martin M. LeWinter

Background— The purpose of this study was to determine whether patients with heart failure and a preserved ejection fraction (HFpEF) have an increase in passive myocardial stiffness and the extent to which discovered changes depend on changes in extracellular matrix fibrillar collagen and cardiomyocyte titin. Methods and Results— Seventy patients undergoing coronary artery bypass grafting underwent an echocardiogram, plasma biomarker determination, and intraoperative left ventricular epicardial anterior wall biopsy. Patients were divided into 3 groups: referent control (n=17, no hypertension or diabetes mellitus), hypertension (HTN) without (–) HFpEF (n=31), and HTN with (+) HFpEF (n=22). One or more of the following studies were performed on the biopsies: passive stiffness measurements to determine total, collagen-dependent and titin-dependent stiffness (differential extraction assay), collagen assays (biochemistry or histology), or titin isoform and phosphorylation assays. In comparison with controls, patients with HTN(–)HFpEF had no change in left ventricular end-diastolic pressure, myocardial passive stiffness, collagen, or titin phosphorylation but had an increase in biomarkers of inflammation (C-reactive protein, soluble ST2, tissue inhibitor of metalloproteinase 1). In comparison with both control and HTN(–)HFpEF, patients with HTN(+)HFpEF had increased left ventricular end-diastolic pressure, left atrial volume, N-terminal propeptide of brain natriuretic peptide, total, collagen-dependent, and titin-dependent stiffness, insoluble collagen, increased titin phosphorylation on PEVK S11878(S26), reduced phosphorylation on N2B S4185(S469), and increased biomarkers of inflammation. Conclusions— Hypertension in the absence of HFpEF did not alter passive myocardial stiffness. Patients with HTN(+)HFpEF had a significant increase in passive myocardial stiffness; collagen-dependent and titin-dependent stiffness were increased. These data suggest that the development of HFpEF depends on changes in both collagen and titin homeostasis.


Journal of Histochemistry and Cytochemistry | 2002

SPARC-null mice exhibit accelerated cutaneous wound closure.

Amy D. Bradshaw; May J. Reed; E. Helene Sage

Expression of SPARC (secreted protein acidic and rich in cysteine; osteonectin, BM-40), an extracellular matrix (ECM) associated protein, is coincident with matrix remodeling. To further identify the functions of SPARC in vivo, we have made excisional wounds on the dorsa of SPARC-null and wild-type mice and monitored closure over time. A significant decrease in the size of the SPARC-null wounds, in comparison to that of wild-type, was observed at Day 4 and was maximal at Day 7. Although substantial differences in the percentage of proliferating cells were not apparent in SPARC-null relative to wild-type wounds, primary cultures of SPARC-null dermal fibroblasts displayed accelerated migration, relative to wild-type fibroblasts, in wound assays in vitro. Although the expression of collagen I mRNA in wounds, as measured by in situ hybridization (ISH), was not significantly different in SPARC-null vs wild-type mice, the collagen content of unwounded skin appeared to be substantially lower in the SPARC-null animals. By hydroxyproline analysis, the concentration of collagen in SPARC-null skin was found to be half that of wild-type skin. Moreover, we found an inverse correlation between the efficiency of collagen gel contraction by dermal fibroblasts and the concentration of collagen within the gel itself. We propose that the accelerated wound closure seen in SPARC-null dermis results from its decreased collagen content, a condition contributing to enhanced contractibility.


Journal of Biological Chemistry | 2007

SPARC regulates processing of procollagen I and collagen fibrillogenesis in dermal fibroblasts.

Tyler J. Rentz; Felicitta Poobalarahi; Paul Bornstein; E. Helene Sage; Amy D. Bradshaw

A characterization of the factors that control collagen fibril formation is critical for an understanding of tissue organization and the mechanisms that lead to fibrosis. SPARC (secreted protein acidic and rich in cysteine) is a counter-adhesive protein that binds collagens. Herein we show that collagen fibrils in SPARC-null skin from mice 1 month of age were inefficient in fibril aggregation and accumulated in the diameter range of 60-70 nm, a proposed intermediate in collagen fibril growth. In vitro, procollagen I produced by SPARC-null dermal fibroblasts demonstrated an initial preferential association with cell layers, in comparison to that produced by wild-type fibroblasts. However, the collagen I produced by SPARC-null cells was not efficiently incorporated into detergent-insoluble fractions. Coincident with an initial increase in cell association, greater amounts of total collagen I were present as processed forms in SPARC-null versus wild-type cells. Addition of recombinant SPARC reversed collagen I association with cell layers and decreased the processing of procollagen I in SPARC-null cells. Although collagen fibers formed on the surface of SPARC-null fibroblasts earlier than those on wild-type cells, fibers on SPARC-null fibroblasts did not persist. We conclude that SPARC mediates the association of procollagen I with cells, as well as its processing and incorporation into the extracellular matrix.


Journal of Cell Communication and Signaling | 2009

The role of SPARC in extracellular matrix assembly

Amy D. Bradshaw

SPARC is a collagen-binding matricellular protein. Expression of SPARC in adult tissues is frequently associated with excessive deposition of collagen and SPARC-null mice fail to generate a robust fibrotic response to a variety of stimuli. This review summarizes recent advancements in the characterization of the binding of SPARC to collagens and describes the results of studies that implicate a function for SPARC in the regulation of the assembly of basal lamina and fibrillar collagen in the ECM. Potential cellular mechanisms that underlie SPARC activity in ECM deposition are also explored.


The International Journal of Biochemistry & Cell Biology | 2012

Diverse biological functions of the SPARC family of proteins.

Amy D. Bradshaw

The SPARC family of proteins represents a diverse group of proteins that modulate cell interaction with the extracellular milieu. The eight members of the SPARC protein family are modular in nature. Each shares a follistatin-like domain and an extracellular calcium binding E-F hand motif. In addition, each family member is secreted into the extracellular space. Some of the shared activities of this family include, regulation of extracellular matrix assembly and deposition, counter-adhesion, effects on extracellular protease activity, and modulation of growth factor/cytokine signaling pathways. Recently, several SPARC family members have been implicated in human disease pathogenesis. This review discusses recent advances in the understanding of the functional roles of the SPARC family of proteins in development and disease.


American Journal of Physiology-heart and Circulatory Physiology | 2010

Age-dependent alterations in fibrillar collagen content and myocardial diastolic function: role of SPARC in post-synthetic procollagen processing

Amy D. Bradshaw; Catalin F. Baicu; Tyler J. Rentz; An O. Van Laer; D. Dirk Bonnema; Michael R. Zile

Advanced age, independent of concurrent cardiovascular disease, can be associated with increased extracellular matrix (ECM) fibrillar collagen content and abnormal diastolic function. However, the mechanisms causing this left ventricular (LV) remodeling remain incompletely defined. We hypothesized that one determinant of age-dependent remodeling is a change in the extent to which newly synthesized procollagen is processed into mature collagen fibrils. We further hypothesized that secreted protein acidic and rich in cysteine (SPARC) plays a key role in the changes in post-synthetic procollagen processing that occur in the aged myocardium. Young (3 mo old) and old (18-24 mo old) wild-type (WT) and SPARC-null mice were studied. LV collagen content was measured histologically by collagen volume fraction, collagen composition was measured by hydroxyproline assay as soluble collagen (1 M NaCl extractable) versus insoluble collagen (mature cross-linked), and collagen morphological structure was examined by scanning electron microscopy. SPARC expression was measured by immunoblot analysis. LV and myocardial structure and function were assessed using echocardiographic and papillary muscle experiments. In WT mice, advanced age increased SPARC expression, myocardial diastolic stiffness, fibrillar collagen content, and insoluble collagen. In SPARC-null mice, advanced age also increased myocardial diastolic stiffness, fibrillar collagen content, and insoluble collagen but significantly less than those seen in WT old mice. As a result, insoluble collagen and myocardial diastolic stiffness were lower in old SPARC-null mice (1.36 +/- 0.08 mg hydroxyproline/g dry wt and 0.04 +/- 0.005) than in old WT mice (1.70 +/- 0.10 mg hydroxyproline/g dry wt and 0.07 +/- 0.005, P < 0.05). In conclusion, the absence of SPARC reduced age-dependent alterations in ECM fibrillar collagen and diastolic function. These data support the hypothesis that SPARC plays a key role in post-synthetic procollagen processing and contributes to the increase in collagen content found in the aged myocardium.


Circulation | 2009

Pressure Overload–Induced Alterations in Fibrillar Collagen Content and Myocardial Diastolic Function Role of Secreted Protein Acidic and Rich in Cysteine (SPARC) in Post–Synthetic Procollagen Processing

Amy D. Bradshaw; Catalin F. Baicu; Tyler J. Rentz; An O. Van Laer; Janet M. Boggs; John M. Lacy; Michael R. Zile

Background— Chronic pressure overload causes myocardial hypertrophy, increased fibrillar collagen content, and abnormal diastolic function. We hypothesized that one determinant of these pressure overload–induced changes is the extracellular processing of newly synthesized procollagen into mature collagen fibrils. We further hypothesized that secreted protein acidic and rich in cysteine (SPARC) plays a key role in post–synthetic procollagen processing in normal and pressure-overloaded myocardium. Methods and Results— To determine whether pressure overload–induced changes in collagen content and diastolic function are affected by the absence of SPARC, age-matched wild-type (WT) and SPARC-null mice underwent either transverse aortic constriction (TAC) for 4 weeks or served as nonoperated controls. Left ventricular (LV) collagen content was measured histologically by collagen volume fraction, collagen composition was measured by hydroxyproline assay as soluble collagen (1 mol/L NaCl extractable) versus insoluble collagen (mature cross-linked collagen), and collagen morphological structure was examined by scanning electron microscopy. SPARC expression was measured by immunoblot. LV, myocardial, and cardiomyocyte structure and function were assessed by echocardiographic, papillary muscle, and isolated cardiomyocyte studies. In WT mice, TAC increased LV mass, SPARC expression, myocardial diastolic stiffness, fibrillar collagen content, and soluble and insoluble collagen. In SPARC-null mice, TAC increased LV mass to an extent similar to WT mice. In addition, in SPARC-null mice, TAC increased fibrillar collagen content, albeit significantly less than that seen in WT TAC mice. Furthermore, the proportion of LV collagen that was insoluble was less in the SPARC-null TAC mice (86±2%) than in WT TAC mice (99±2%, P<0.05), and the proportion of collagen that was soluble was greater in the SPARC-null TAC mice (14±2%) than in WT TAC mice (1±2%, P<0.05) As a result, myocardial diastolic stiffness was lower in SPARC-null TAC mice (0.075±0.005) than in WT TAC mice (0.045±0.005, P<0.05). Conclusions— The absence of SPARC reduced pressure overload–induced alterations in extracellular matrix fibrillar collagen and diastolic function. These data support the hypothesis that SPARC plays a key role in post–synthetic procollagen processing and the development of mature cross-linked collagen fibrils in normal and pressure-overloaded myocardium.


Journal of Molecular and Cellular Cardiology | 2010

Cardiac extracellular matrix remodeling: Fibrillar collagens and Secreted Protein Acidic and Rich in Cysteine (SPARC)

Sarah M. McCurdy; Catalin F. Baicu; Stephane Heymans; Amy D. Bradshaw

The cardiac interstitium is a unique and adaptable extracellular matrix (ECM) that provides a milieu in which myocytes, fibroblasts, and endothelial cells communicate and function. The composition of the ECM in the heart includes structural proteins such as fibrillar collagens and matricellular proteins that modulate cell:ECM interaction. Secreted Protein Acidic and Rich in Cysteine (SPARC), a collagen-binding matricellular protein, serves a key role in collagen assembly into the ECM. Recent results demonstrated increased cardiac rupture, dysfunction and mortality in SPARC-null mice in response to myocardial infarction that was associated with a decreased capacity to generate organized, mature collagen fibers. In response to pressure overload induced-hypertrophy, the decrease in insoluble collagen incorporation in the left ventricle of SPARC-null hearts was coincident with diminished ventricular stiffness in comparison to WT mice with pressure overload. This review will focus on the role of SPARC in the regulation of interstitial collagen during cardiac remodeling following myocardial infarction and pressure overload with a discussion of potential cellular mechanisms that control SPARC-dependent collagen assembly in the heart.

Collaboration


Dive into the Amy D. Bradshaw's collaboration.

Top Co-Authors

Avatar

Catalin F. Baicu

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Michael R. Zile

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

E. Helene Sage

Benaroya Research Institute

View shared research outputs
Top Co-Authors

Avatar

Rolf A. Brekken

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tyler J. Rentz

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

An O. Van Laer

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Yuhua Zhang

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Janet M. Boggs

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Juliet G. Carbon

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lee B. Rivera

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge