Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy E. Clipperton-Allen is active.

Publication


Featured researches published by Amy E. Clipperton-Allen.


Frontiers in Neuroendocrinology | 2009

Neuroendocrinology of social information processing in rats and mice

Elena Choleris; Amy E. Clipperton-Allen; Anna Phan; Martin Kavaliers

We reviewed oxytocin (OT), arginine-vasopressin (AVP) and gonadal hormone involvement in various modes of social information processing in mice and rats. Gonadal hormones regulate OT and AVP mediation of social recognition and social learning. Estrogens foster OT-mediated social recognition and the recognition and avoidance of parasitized conspecifics via estrogen receptor (ER) alpha (ERalpha) and ERbeta. Testosterone and its metabolites, including estrogens, regulate social recognition in males predominantly via the AVP V1a receptor. Both OT and AVP are involved in the social transmission of food preferences and ERalpha has inhibitory, while ERbeta has enhancing, roles. OT also enhances mate copying by females. ERalpha mediates the sexual, and ERbeta the recognition, aspects of the risk-taking enhancing effects of females on males. Thus, androgens and estrogens control social information processing by regulating OT and AVP. This control is finely tuned for different forms of social information processing.


Behavioral Neuroscience | 2012

Interplay of oxytocin, vasopressin, and sex hormones in the regulation of social recognition.

Christopher S. Gabor; Anna Phan; Amy E. Clipperton-Allen; Martin Kavaliers; Elena Choleris

Social Recognition is a fundamental skill that forms the basis of behaviors essential to the proper functioning of pair or group living in most social species. We review here various neurobiological and genetic studies that point to an interplay of oxytocin (OT), arginine-vasopressin (AVP), and the gonadal hormones, estrogens and testosterone, in the mediation of social recognition. Results of a number of studies have shown that OT and its actions at the medial amygdala seem to be essential for social recognition in both sexes. Estrogens facilitate social recognition, possibly by regulating OT production in the hypothalamus and the OT receptors at the medial amygdala. Estrogens also affect social recognition on a rapid time scale, likely through nongenomic actions. The mechanisms of these rapid effects are currently unknown but available evidence points at the hippocampus as the possible site of action. Male rodents seem to be more dependent on AVP acting at the level of the lateral septum for social recognition than female rodents. Results of various studies suggest that testosterone and its metabolites (including estradiol) influence social recognition in males primarily through the AVP V1a receptor. Overall, it appears that gonadal hormone modulation of OT and AVP regulates and fine tunes social recognition and those behaviors that depend upon it (e.g., social bonds, social hierarchies) in a sex specific manner. This points at an important role for these neuroendocrine systems in the regulation of the sex differences that are evident in social behavior and of sociality as a whole.


Frontiers in Neuroendocrinology | 2012

Estrogenic involvement in social learning, social recognition and pathogen avoidance

Elena Choleris; Amy E. Clipperton-Allen; Anna Phan; Paola Valsecchi; Martin Kavaliers

Sociality comes with specific cognitive skills that allow the proper processing of information about others (social recognition), as well as of information originating from others (social learning). Because sociality and social interactions can also facilitate the spread of infection among individuals the ability to recognize and avoid pathogen threat is also essential. We review here various studies primarily from the rodent literature supporting estrogenic involvement in the regulation of social recognition, social learning (socially acquired food preferences and mate choice copying) and the recognition and avoidance of infected and potentially infected individuals. We consider both genomic and rapid estrogenic effects involving estrogen receptors α and β, and G-protein coupled estrogen receptor 1, along with their interactions with neuropeptide systems in the processing of social stimuli and the regulation and expression of these various socially relevant behaviors.


Human Molecular Genetics | 2014

Pten haploinsufficient mice show broad brain overgrowth but selective impairments in autism-relevant behavioral tests

Amy E. Clipperton-Allen; Damon T. Page

Accelerated head and brain growth (macrocephaly) during development is a replicated biological finding in a subset of individuals with autism spectrum disorder (ASD). However, the relationship between brain overgrowth and the behavioral and cognitive symptoms of ASD is poorly understood. The PI3K-Akt-mTOR pathway regulates cellular growth; several genes encoding negative regulators of this pathway are ASD risk factors, including PTEN. Mutations in PTEN have been reported in individuals with ASD and macrocephaly. We report that brain overgrowth is widespread in Pten germline haploinsufficient (Pten(+/-)) mice, reflecting Pten mRNA expression in the developing brain. We then ask if broad brain overgrowth translates into general or specific effects on the development of behavior and cognition by testing Pten(+/-) mice using assays relevant to ASD and comorbidities. Deficits in social behavior were observed in both sexes. Males also showed abnormalities related to repetitive behavior and mood/anxiety. Females exhibited circadian activity and emotional learning phenotypes. Widespread brain overgrowth together with selective behavioral impairments in Pten(+/-) mice raises the possibility that most brain areas and constituent cell types adapt to an altered trajectory of growth with minimal impact on the behaviors tested in our battery; however, select areas/cell types relevant to social behavior are more vulnerable or less adaptable, thus resulting in social deficits. Probing dopaminergic neurons as a candidate vulnerable cell type, we found social behavioral impairments in mice with Pten conditionally inactivated in dopaminergic neurons that are consistent with the possibility that desynchronized growth in key cell types may contribute to ASD endophenotypes.


The Journal of Neuroscience | 2015

Pten Mutations Alter Brain Growth Trajectory and Allocation of Cell Types through Elevated β-Catenin Signaling

Youjun Chen; Wen-Chin Huang; Julien Séjourné; Amy E. Clipperton-Allen; Damon T. Page

Abnormal patterns of head and brain growth are a replicated finding in a subset of individuals with autism spectrum disorder (ASD). It is not known whether risk factors associated with ASD and abnormal brain growth (both overgrowth and undergrowth) converge on common biological pathways and cellular mechanisms in the developing brain. Heterozygous mutations in PTEN (PTEN+/−), which encodes a negative regulator of the PI3K-Akt-mTOR pathway, are a risk factor for ASD and macrocephaly. Here we use the developing cerebral cortex of Pten+/− mice to investigate the trajectory of brain overgrowth and underlying cellular mechanisms. We find that overgrowth is detectable from birth to adulthood, is driven by hyperplasia, and coincides with excess neurons at birth and excess glia in adulthood. β-Catenin signaling is elevated in the developing Pten+/− cortex, and a heterozygous mutation in Ctnnb1 (encoding β-catenin), itself a candidate gene for ASD and microcephaly, can suppress Pten+/− cortical overgrowth. Thus, a balance of Pten and β-catenin signaling regulates normal brain growth trajectory by controlling cell number, and imbalance in this relationship can result in abnormal brain growth. SIGNIFICANCE STATEMENT We report that Pten haploinsufficiency leads to a dynamic trajectory of brain overgrowth during development and altered scaling of neuronal and glial cell populations. β-catenin signaling is elevated in the developing cerebral cortex of Pten haploinsufficient mice, and a heterozygous mutation in β-catenin, itself a candidate gene for ASD and microcephaly, suppresses Pten+/− cortical overgrowth. This leads to the new insight that Pten and β-catenin signaling act in a common pathway to regulate normal brain growth trajectory by controlling cell number, and disruption of this pathway can result in abnormal brain growth.


Psychoneuroendocrinology | 2011

Effects of an estrogen receptor alpha agonist on agonistic behaviour in intact and gonadectomized male and female mice

Amy E. Clipperton-Allen; Anne Almey; Ashley Melichercik; Craig P. Allen; Elena Choleris

Gonadal hormones mediate both affiliative and agonistic social interactions. Research in estrogen receptor alpha (ERα) or beta (ERβ) knockout (KO) mice suggests that ERα increases and ERβ decreases male aggression, while the opposite is found for female ERαKO and ERβKO mice. Using a detailed behavioural analysis of the resident-intruder test, we have shown that the ERβ selective agonist WAY-200070 increased agonistic behaviours, such as aggressive grooming and pushing down a gonadectomized (gonadex) intruder, in gonadally intact but not gonadex male and female resident mice, while leaving attacks unaffected. The role of acute activation of ERα in agonistic behaviour in adult non-KO CD1 mice is presently unknown. The current study assesses the effects of the ERα selective agonist 1,3,5-tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT) on the social and agonistic responses of gonadally intact and gonadex male and female CD1 mice to a gonadex, same-sex intruder. PPT had few effects in gonadally intact mice, but seems to increase sex-typical aggression (i.e., attacks in males, other dominance-related behaviours in females) in gonadex mice. In untreated mice, we confirmed our previous findings that gonadally intact males attacked the intruder more than females, but females spent more time engaged in agonistic behaviour than males. As in our previous results, we observed that gonadex mice generally show behaviour patterns more like those of the gonadally intact opposite sex, while leaving overall levels of agonistic behaviour unaffected. Taken together, our current and previous results show that exogenous activation of ERα had no effects in gonadally intact mice, but increased sex-typical agonistic behaviour in gonadex mice, while ERβ had no effects in gonadex mice, but increased non-attack agonistic behaviour in gonadally intact animals. This suggests that, as in social recognition, ERα may be necessary for the activation of agonistic responses, while ERβ may play a modulatory role.


Physiology & Behavior | 2012

Oxytocin, vasopressin and estrogen receptor gene expression in relation to social recognition in female mice

Amy E. Clipperton-Allen; Anna W. Lee; Anny Reyes; Nino Devidze; Anna Phan; Donald W. Pfaff; Elena Choleris

Inter- and intra-species differences in social behavior and recognition-related hormones and receptors suggest that different distribution and/or expression patterns may relate to social recognition. We used qRT-PCR to investigate naturally occurring differences in expression of estrogen receptor-alpha (ERα), ER-beta (ERβ), progesterone receptor (PR), oxytocin (OT) and receptor, and vasopressin (AVP) and receptors in proestrous female mice. Following four 5 min exposures to the same two conspecifics, one was replaced with a novel mouse in the final trial (T5). Gene expression was examined in mice showing high (85-100%) and low (40-60%) social recognition scores (i.e., preferential novel mouse investigation in T5) in eight socially-relevant brain regions. Results supported OT and AVP involvement in social recognition, and suggest that in the medial preoptic area, increased OT and AVP mRNA, together with ERα and ERβ gene activation, relate to improved social recognition. Initial social investigation correlated with ERs, PR and OTR in the dorsolateral septum, suggesting that these receptors may modulate social interest without affecting social recognition. Finally, increased lateral amygdala gene activation in the LR mice may be associated with general learning impairments, while decreased lateral amygdala activity may indicate more efficient cognitive mechanisms in the HR mice.


Neuropsychopharmacology | 2011

Differential Effects of Dopamine Receptor D1-Type and D2-Type Antagonists and Phase of the Estrous Cycle on Social Learning of Food Preferences, Feeding, and Social Interactions in Mice

Elena Choleris; Amy E. Clipperton-Allen; Durene G Gray; Sebastian Diaz-Gonzalez; Robert G Welsman

The neurobiological bases of social learning, by which an animal can ‘exploit the expertise of others’ and avoid the disadvantages of individual learning, are only partially understood. We examined the involvement of the dopaminergic system in social learning by administering a dopamine D1-type receptor antagonist, SCH23390 (0.01, 0.05, and 0.1 mg/kg), or a D2-type receptor antagonist, raclopride (0.1, 0.3, and 0.6 mg/kg), to adult female mice prior to socially learning a food preference. We found that while SCH23390 dose-dependently inhibited social learning without affecting feeding behavior or the ability of mice to discriminate between differently flavored diets, raclopride had the opposite effects, inhibiting feeding but leaving social learning unaffected. We showed that food odor, alone or in a social context, was insufficient to induce a food preference, proving the specifically social nature of this paradigm. The estrous cycle also affected social learning, with mice in proestrus expressing the socially acquired food preference longer than estrous and diestrous mice. This suggests gonadal hormone involvement, which is consistent with known estrogenic regulation of female social behavior and estrogen receptor involvement in social learning. Furthermore, a detailed ethological analysis of the social interactions during which social learning occurs showed raclopride- and estrous phase-induced changes in agonistic behavior, which were not directly related to effects on social learning. Overall, these results suggest a differential involvement of the D1-type and D2-type receptors in the regulation of social learning, feeding, and agonistic behaviors that are likely mediated by different underlying states.


Genes, Brain and Behavior | 2015

Decreased aggression and increased repetitive behavior in Pten haploinsufficient mice

Amy E. Clipperton-Allen; Damon T. Page

Aggression is an aspect of social behavior that can be elevated in some individuals with autism spectrum disorder (ASD) and a concern for peers and caregivers. Mutations in Phosphatase and tensin homolog (PTEN), one of several ASD risk factors encoding negative regulators of the PI3K–Akt–mTOR pathway, have been reported in individuals with ASD and comorbid macrocephaly. We previously showed that a mouse model of Pten germline haploinsufficiency (Pten+/−) has selective deficits, primarily in social behavior, along with broad overgrowth of the brain. Here, we further examine the social behavior of Pten+/− male mice in the resident–intruder test of aggression, using a comprehensive behavioral analysis to obtain an overall picture of the agonistic, non‐agonistic and non‐social behavior patterns of Pten+/− mice during a free interaction with a novel conspecific. Pten+/− male mice were involved in less aggression than their wild‐type littermates. Pten+/− mice also performed less social investigation, including anogenital investigation and approaching and/or attending to the intruder, which is consistent with our previous finding of decreased sociability in the social approach test. In contrast to these decreases in social behaviors, Pten+/− mice showed increased digging. In summary, we report decreased aggression and increased repetitive behavior in Pten+/− mice, thus extending our characterization of this model of an ASD risk factor that features brain overgrowth and social deficits.


Autism Research | 2016

Autism‐relevant behaviors are minimally impacted by conditional deletion of Pten in oxytocinergic neurons

Amy E. Clipperton-Allen; Youjun Chen; Damon T. Page

Germline heterozygous mutations in Pten (phosphatase and tensin homolog) are associated with macrocephaly and autism spectrum disorders (ASD). Pten germline heterozygous (Pten+/−) mice approximate these mutations, and both sexes show widespread brain overgrowth and impaired social behavior. Strikingly similar behavior phenotypes have been reported in oxytocin (Oxt) and/or oxytocin receptor (OxtR) knockout mice. Thus, we hypothesized that the behavioral phenotypes of germline Pten+/− mice may be caused by reduced Pten function in Oxt‐expressing cells. To investigate this, we tested mice in which Pten was conditionally deleted using oxytocin‐Cre (Oxt‐Cre+; PtenloxP/+, Oxt‐Cre+; PtenloxP/loxP) on a battery including assays of social, repetitive, depression‐like, and anxiety‐like behaviors. Minimal behavioral abnormalities were found; decreased anxiety‐like behavior in the open field test in Oxt‐Cre+; PtenloxP/loxP males was the only result that phenocopied germline Pten+/− mice. However, Oxt cell size was dramatically increased in Oxt‐Cre+; PtenloxP/loxP mice in adulthood. Thus, conditional deletion of Pten using Oxt‐Cre has a profound effect on Oxt cell structure, but not on ASD‐relevant behavior. We interpret these results as inconsistent with our starting hypothesis that reduced Pten function in Oxt‐expressing cells causes the behavioral deficits observed in germline Pten+/− mice. Autism Res 2016, 9: 1248–1262.

Collaboration


Dive into the Amy E. Clipperton-Allen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Kavaliers

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Damon T. Page

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Youjun Chen

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge