Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy E. Landis is active.

Publication


Featured researches published by Amy E. Landis.


Environmental Science & Technology | 2009

Impact of biofuel crop production on the formation of hypoxia in the Gulf of Mexico.

Christine Costello; W. Michael Griffin; Amy E. Landis; H. Scott Matthews

Many studies have compared corn-based ethanol to cellulosic ethanol on a per unit basis and have generally concluded that cellulosic ethanol will result in fewer environmental consequences, including nitrate (NO3(-)) output. This study takes a system-wide approach in considering the NO3(-) output and the relative areal extent of hypoxia in the Northern Gulf of Mexico (NGOM) due to the introduction of additional crops for biofuel production. We stochastically estimate NO3(-) loading to the NGOM and use these results to approximate the areal extent of hypoxia for scenarios that meet the Energy Independence and Security Act of 2007s biofuel goals for 2015 and 2022. Crops for ethanol include corn, corn stover, and switchgrass; all biodiesel is assumed to be from soybeans. Our results indicate that moving from corn to cellulosics for ethanol production may result in a 20-percent decrease (based on mean values) in NO3(-) output from the Mississippi and Atchafalaya River Basin (MARB). This decrease will not meet the EPA target for hypoxic zone reduction. An aggressive nutrient management strategy will be needed to reach the 5000 km2 areal extent of hypoxia in the NGOM goal set forth by the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force even in the absence of biofuels, given current production to meet food, feed, and other industrial needs.


Bioresource Technology | 2011

Evaluating industrial symbiosis and algae cultivation from a life cycle perspective.

Kullapa Soratana; Amy E. Landis

A comparative life cycle assessment (LCA) was conducted on 20 scenarios of microalgae cultivation. These scenarios examined the utilization of nutrients and CO(2) from synthetic sources and waste streams as well as the materials used to construct a photobioreactor (PBR). A 0.2-m(3) closed PBR of Chlorella vulgaris at 30%-oil content by weight with the productivity of 25 g/m(2) × day was used as a case study. Results of the study show that the utilization of resources from waste streams mainly avoided global warming potential (GWP) and eutrophication impacts. Impacts from the production of material used to construct the PBR dominate total impacts in acidification and ozone depletion categories, even over longer PBR lifetimes; thus, the choice of PBR construction materials is important.


Bioresource Technology | 2014

Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock

Matthew K. Weschler; William J. Barr; Willie F. Harper; Amy E. Landis

Harvesting and drying are often described as the most energy intensive stages of microalgal biofuel production. This study analyzes two cultivation and eleven harvest technologies for the production of microalgae biomass with and without the use of drying. These technologies were combined to form 122 different production scenarios. The results of this study present a calculation methodology and optimization of total energy demand for the production of algal biomass for biofuel production. The energetic interaction between unit processes and total process energy demand are compared for each scenario. Energy requirements are shown to be highly dependent on final mass concentration, with thermal drying being the largest energy consumer. Scenarios that omit thermal drying in favor of lipid extraction from wet biomass show the most promise for energy efficient biofuel production. Scenarios which used open ponds for cultivation, followed by settling and membrane filtration were the most energy efficient.


Waste Management | 2015

Toward zero waste: Composting and recycling for sustainable venue based events

Troy A. Hottle; Melissa M. Bilec; Nicholas R. Brown; Amy E. Landis

This study evaluated seven different waste management strategies for venue-based events and characterized the impacts of event waste management via waste audits and the Waste Reduction Model (WARM). The seven waste management scenarios included traditional waste handling methods (e.g. recycle and landfill) and management of the waste stream via composting, including purchasing where only compostable food service items were used during the events. Waste audits were conducted at four Arizona State University (ASU) baseball games, including a three game series. The findings demonstrate a tradeoff among CO2 equivalent emissions, energy use, and landfill diversion rates. Of the seven waste management scenarios assessed, the recycling scenarios provide the greatest reductions in CO2 eq. emissions and energy use because of the retention of high value materials but are compounded by the difficulty in managing a two or three bin collection system. The compost only scenario achieves complete landfill diversion but does not perform as well with respect to CO2 eq. emissions or energy. The three game series was used to test the impact of staffed bins on contamination rates; the first game served as a baseline, the second game employed staffed bins, and the third game had non staffed bins to determine the effect of staffing on contamination rates. Contamination rates in both the recycling and compost bins were tracked throughout the series. Contamination rates were reduced from 34% in the first game to 11% on the second night (with the staffed bins) and 23% contamination rates at the third game.


Science of The Total Environment | 2012

Life Cycle Assessment Perspectives on Delivering an Infant in the US

Nicole Campion; Cassandra L. Thiel; Justin DeBlois; Noe C. Woods; Amy E. Landis; Melissa M. Bilec

This study introduces life cycle assessment as a tool to analyze one aspect of sustainability in healthcare: the birth of a baby. The process life cycle assessment case study presented evaluates two common procedures in a hospital, a cesarean section and a vaginal birth. This case study was conducted at Magee-Womens Hospital of the University of Pittsburgh Medical Center, which delivers over 10,000 infants per year. The results show that heating, ventilation, and air conditioning (HVAC), waste disposal, and the production of the disposable custom packs comprise a large percentage of the environmental impacts. Applying the life cycle assessment tool to medical procedures allows hospital decision makers to target and guide efforts to reduce the environmental impacts of healthcare procedures.


Environmental Science & Technology | 2015

Environmental Impacts of Surgical Procedures: Life Cycle Assessment of Hysterectomy in the United States

Cassandra L. Thiel; Matthew J. Eckelman; Richard Guido; Matthew Huddleston; Amy E. Landis; Jodi Sherman; Scott O. Shrake; Noe Copley-Woods; Melissa M. Bilec

The healthcare sector is a driver of economic growth in the U.S., with spending on healthcare in 2012 reaching


International Journal of Life Cycle Assessment | 2012

Life cycle assessment evaluation of green product labeling systems for residential construction

Neethi Rajagopalan; Melissa M. Bilec; Amy E. Landis

2.8 trillion, or 17% of the U.S. gross domestic product, but it is also a significant source of emissions that adversely impact environmental and public health. The current state of the healthcare industry offers significant opportunities for environmental efficiency improvements, potentially leading to reductions in costs, resource use, and waste without compromising patient care. However, limited research exists that can provide quantitative, sustainable solutions. The operating room is the most resource-intensive area of a hospital, and surgery is therefore an important focal point to understand healthcare-related emissions. Hybrid life cycle assessment (LCA) was used to quantify environmental emissions from four different surgical approaches (abdominal, vaginal, laparoscopic, and robotic) used in the second most common major procedure for women in the U.S., the hysterectomy. Data were collected from 62 cases of hysterectomy. Life cycle assessment results show that major sources of environmental emissions include the production of disposable materials and single-use surgical devices, energy used for heating, ventilation, and air conditioning, and anesthetic gases. By scientifically evaluating emissions, the healthcare industry can strategically optimize its transition to a more sustainable system.


Bioresource Technology | 2014

Effects of co-products on the life-cycle impacts of microalgal biodiesel

Kullapa Soratana; William J. Barr; Amy E. Landis

PurposeLife cycle assessment (LCA) is a tool that can be utilized to holistically evaluate novel trends in the construction industry and the associated environmental impacts. Green labels are awarded by several organizations based on single or multiple attributes. The use of multi-criteria labels is a good start to the labeling process as opposed to single criteria labels that ignore a majority of impacts from products. Life cycle thinking, in theory, has the potential to improve the environmental impacts of labeling systems. However, LCA databases currently are lacking in detailed information about products or sometimes provide conflicting information.MethodThis study compares generic and green-labeled carpets, paints, and linoleum flooring using the Building for Environmental and Economic Sustainability (BEES) LCA database. The results from these comparisons are not intuitive and are contradictory in several impact categories with respect to the greenness of the product. Other data sources such as environmental product declarations and ecoinvent are also compared with the BEES data to compare the results and display the disparity in the databases.ResultsThis study shows that partial LCAs focused on the production and transportation phase help in identifying improvements in the product itself and improving the manufacturing process but the results are uncertain and dependent upon the source or database. Inconsistencies in the data and missing categories add to the ambiguity in LCA results.ConclusionsWhile life cycle thinking in concept can improve the green labeling systems available, LCA data is lacking. Therefore, LCA data and tools need to improve to support and enable market trends.


Journal of Integrative Agriculture | 2015

A case for systemic environmental analysis of cultured meat

Carolyn S Mattick; Amy E. Landis; Braden R. Allenby

Microalgal biodiesel production has been investigated for decades, yet it is not commercially available. Part of the problem is that the production process is energy and chemical intensive due, in part, to the high portion of microalgal biomass left as residues. This study investigated cradle-to-gate life-cycle environmental impacts from six different scenarios of microalgal biodiesel and its co-products. Ozone depletion, global warming, photochemical smog formation, acidification and eutrophication potentials were assessed using the Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI). Monte Carlo Analysis was conducted to investigate the processes with major contribution in each impact category. The market opportunity for each co-product was examined based on supply, demand and prices of the products that could potentially be substituted by the co-products. The results indicated that the scenario with the least life-cycle environmental impacts in all the five impact categories with the highest net energy ratio was the scenario utilizing a multitude of co-products including bioethanol from lipid-extracted microalgae (LEA), biomethane (to produce electricity and heat) from simultaneous saccharification-fermentation (SSF) residues, land-applied material from SSF residue anaerobic digestion (AD) solid digestate, recycling nutrients from SSF residue AD liquid digestate and CO2 recovered from SSF process contributed. Decreasing the energy consumption of the centrifuge in the land-applied material production process and increasing the lipid content of microalgae can reduce environmental footprints of the co-products. The same scenario also had the highest total income indicating their potential as co-products in the market.


ieee international symposium on sustainable systems and technology | 2011

Enabling dynamic life cycle assessment of buildings with wireless sensor networks

William O. Collinge; Liang Liao; Haifeng Xu; Christi L. Saunders; Melissa M. Bilec; Amy E. Landis; Laura A. Schaefer

The environmental implications of cultured meat are profound. An anticipatory life cycle assessment of cultured meat published in 2011 suggested it could have a smaller impact than agricultural meat in all categories except energy consumption. As with most technologies, cultured meat will almost certainly be accompanied by unintended consequences as well as unforeseen costs and benefits that accrue disproportionately to different stakeholders. Uncertainty associated with new engineered products cannot be completely eliminated prior to introduction, but ongoing environmental assessments of the technologies as they advance can serve to reduce unforeseen risks. Given the pace at which tissue engineering is advancing, systemic assessments of the technology will be pivotal in mitigating unintended environmental consequences.

Collaboration


Dive into the Amy E. Landis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicole Campion

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaobo Xue

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Haifeng Xu

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Troy A. Hottle

Arizona State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge