Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy E. Pasquinelli is active.

Publication


Featured researches published by Amy E. Pasquinelli.


Nature | 2000

The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans.

Brenda J. Reinhart; Frank J. Slack; Michael Basson; Amy E. Pasquinelli; Bettinger Jc; Ann E. Rougvie; H R Horvitz; Gary Ruvkun

The C. elegans heterochronic gene pathway consists of a cascade of regulatory genes that are temporally controlled to specify the timing of developmental events. Mutations in heterochronic genes cause temporal transformations in cell fates in which stage-specific events are omitted or reiterated. Here we show that let-7 is a heterochronic switch gene. Loss of let-7 gene activity causes reiteration of larval cell fates during the adult stage, whereas increased let-7 gene dosage causes precocious expression of adult fates during larval stages. let-7 encodes a temporally regulated 21-nucleotide RNA that is complementary to elements in the 3′ untranslated regions of the heterochronic genes lin-14, lin-28, lin-41, lin-42 and daf-12, indicating that expression of these genes may be directly controlled by let-7. A reporter gene bearing the lin-41 3′ untranslated region is temporally regulated in a let-7-dependent manner. A second regulatory RNA, lin-4, negatively regulates lin-14 and lin-28 through RNA–RNA interactions with their 3′ untranslated regions. We propose that the sequential stage-specific expression of the lin-4 and let-7 regulatory RNAs triggers transitions in the complement of heterochronic regulatory proteins to coordinate developmental timing.


Cell | 2001

Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing

Alla Grishok; Amy E. Pasquinelli; Darryl Conte; Na Li; Susan Parrish; Ilho Ha; David L. Baillie; Andrew Fire; Gary Ruvkun; Craig C. Mello

RNAi is a gene-silencing phenomenon triggered by double-stranded (ds) RNA and involves the generation of 21 to 26 nt RNA segments that guide mRNA destruction. In Caenorhabditis elegans, lin-4 and let-7 encode small temporal RNAs (stRNAs) of 22 nt that regulate stage-specific development. Here we show that inactivation of genes related to RNAi pathway genes, a homolog of Drosophila Dicer (dcr-1), and two homologs of rde-1 (alg-1 and alg-2), cause heterochronic phenotypes similar to lin-4 and let-7 mutations. Further we show that dcr-1, alg-1, and alg-2 are necessary for the maturation and activity of the lin-4 and let-7 stRNAs. Our findings suggest that a common processing machinery generates guide RNAs that mediate both RNAi and endogenous gene regulation.


Nature Reviews Genetics | 2012

MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship

Amy E. Pasquinelli

MicroRNAs (miRNAs) have emerged as key gene regulators in diverse biological pathways. These small non-coding RNAs bind to target sequences in mRNAs, typically resulting in repressed gene expression. Several methods are now available for identifying miRNA target sites, but the mere presence of an miRNA-binding site is insufficient for predicting target regulation. Regulation of targets by miRNAs is subject to various levels of control, and recent developments have presented a new twist; targets can reciprocally control the level and function of miRNAs. This mutual regulation of miRNAs and target genes is challenging our understanding of the gene-regulatory role of miRNAs in vivo and has important implications for the use of these RNAs in therapeutic settings.


Nature Genetics | 2004

MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression.

Jennifer H. Mansfield; Brian D. Harfe; Robert Nissen; John Obenauer; Jalagani Srineel; Aadel Chaudhuri; Raphael Farzan-Kashani; Michael Zuker; Amy E. Pasquinelli; Gary Ruvkun; Phillip A. Sharp; Clifford J. Tabin; Michael T. McManus

MicroRNAs (miRNAs) are a class of short (∼22-nt) noncoding RNA molecules that downregulate expression of their mRNA targets. Since their discovery as regulators of developmental timing in Caenorhabditis elegans, hundreds of miRNAs have been identified in both animals and plants. Here, we report a technique for visualizing detailed miRNA expression patterns in mouse embryos. We elucidate the tissue-specific expression of several miRNAs during embryogenesis, including two encoded by genes embedded in homeobox (Hox) clusters, miR-10a and miR-196a. These two miRNAs are expressed in patterns that are markedly reminiscent of those of Hox genes. Furthermore, miR-196a negatively regulates Hoxb8, indicating that its restricted expression pattern probably reflects a role in the patterning function of the Hox complex.


Nature | 2007

MicroRNA silencing through RISC recruitment of eIF6

Thimmaiah P. Chendrimada; Kenneth J. Finn; Xinjun Ji; David Baillat; Richard I. Gregory; Stephen A. Liebhaber; Amy E. Pasquinelli; Ramin Shiekhattar

MicroRNAs (miRNAs) are a class of small RNAs that act post-transcriptionally to regulate messenger RNA stability and translation. To elucidate how miRNAs mediate their repressive effects, we performed biochemical and functional assays to identify new factors in the miRNA pathway. Here we show that human RISC (RNA-induced silencing complex) associates with a multiprotein complex containing MOV10—which is the homologue of Drosophila translational repressor Armitage—and proteins of the 60S ribosome subunit. Notably, this complex contains the anti-association factor eIF6 (also called ITGB4BP or p27BBP), a ribosome inhibitory protein known to prevent productive assembly of the 80S ribosome. Depletion of eIF6 in human cells specifically abrogates miRNA-mediated regulation of target protein and mRNA levels. Similarly, depletion of eIF6 in Caenorhabditis elegans diminishes lin-4 miRNA-mediated repression of the endogenous LIN-14 and LIN-28 target protein and mRNA levels. These results uncover an evolutionarily conserved function of the ribosome anti-association factor eIF6 in miRNA-mediated post-transcriptional silencing.


Annual Review of Cell and Developmental Biology | 2002

Control of developmental timing by micrornas and their targets.

Amy E. Pasquinelli; Gary Ruvkun

In Caenorhabditis elegans the timing of many developmental events is regulated by heterochronic genes. Such genes orchestrate the timing of cell divisions and fates appropriate for the developmental stage of an organism. Analyses of heterochronic mutations in the nematode C. elegans have revealed a genetic pathway that controls the timing of post-embryonic cell divisions and fates. Two of the genes in this pathway encode small regulatory RNAs. The 22 nucleotide (nt) RNAs downregulate the expression of protein-coding mRNAs of target heterochronic genes. Analogous variations in the timing of appearance of particular features have been noted among closely related species, suggesting that such explicit control of developmental timing may not be exclusive to C. elegans. In fact, some of the genes that globally pattern the temporal progression of C. elegans development, including one of the tiny RNA genes, are conserved and temporally regulated across much of animal phylogeny, suggesting that the molecular mechanisms of temporal control are ancient and universal. A very large family of tiny RNA genes called microRNAs, which are similar in structure to the heterochronic regulatory RNAs, have been detected in diverse animal species and are likely to be present in most metazoans. Functions of the newly discovered microRNAs are not yet known. Other examples of temporal programs during growth include the exquisitely choreographed temporal sequences of developmental fates in neurogenesis in Drosophila and the sequential programs of epidermal coloration in insect wing patterning. An interesting possibility is that microRNAs mediate transitions on a variety of time scales to pattern the activities of particular target protein-coding genes and in turn generate sets of cells over a period of time. Plasticity in these microRNA genes or their targets may lead to changes in relative developmental timing between related species, or heterochronic change. Instead of inventing new gene functions, even subtle changes in temporal expression of pre-existing control genes can result in speciation by altering the time at which they function.


Nature Structural & Molecular Biology | 2010

Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans

Dimitrios G. Zisoulis; Michael Lovci; Melissa L. Wilbert; Kasey R Hutt; Tiffany Y Liang; Amy E. Pasquinelli; Gene W. Yeo

MicroRNAs (miRNAs) regulate gene expression by guiding Argonaute proteins to specific target mRNA sequences. Identification of bona fide miRNA target sites in animals is challenging because of uncertainties regarding the base-pairing requirements between miRNA and target as well as the location of functional binding sites within mRNAs. Here we present the results of a comprehensive strategy aimed at isolating endogenous mRNA target sequences bound by the Argonaute protein ALG-1 in C. elegans. Using cross-linking and ALG-1 immunoprecipitation coupled with high-throughput sequencing (CLIP-seq), we identified extensive ALG-1 interactions with specific 3′ untranslated region (UTR) and coding exon sequences and discovered features that distinguish miRNA complex binding sites in 3′ UTRs from those in other genic regions. Furthermore, our analyses revealed a striking enrichment of Argonaute binding sites in genes important for miRNA function, suggesting an autoregulatory role that may confer robustness to the miRNA pathway.


Nature Structural & Molecular Biology | 2010

MicroRNA assassins: factors that regulate the disappearance of miRNAs

Zoya S. Kai; Amy E. Pasquinelli

MicroRNAs (miRNAs) control essential gene regulatory pathways in plants and animals. Serving as guides in silencing complexes, miRNAs direct Argonaute proteins to specific target messenger RNAs to repress protein expression. The mature, 22-nucleotide (nt) miRNA is the product of multiple processing steps, and recent studies have uncovered factors that directly control the stability of the functional RNA form. Although alteration of miRNA levels has been linked to numerous disease states, the mechanisms responsible for stabilized or reduced miRNA expression have been largely elusive. The discovery of specific cis-acting modifications and trans-acting proteins that affect miRNA half-life reveals new elements that contribute to the homeostasis of these vital regulatory molecules.


The EMBO Journal | 1997

The constitutive transport element (CTE) of Mason–Pfizer monkey virus (MPMV) accesses a cellular mRNA export pathway

Amy E. Pasquinelli; Robert K. Ernst; Elsebet Lund; Christian Grimm; Maria L. Zapp; David Rekosh; Marie-Louise Hammarskjold; James E. Dahlberg

The constitutive transport elements (CTEs) of type D retroviruses are cis‐acting elements that promote nuclear export of incompletely spliced mRNAs. Unlike the Rev response element (RRE) of human immunodeficiency virus type 1 (HIV‐1), CTEs depend entirely on factors encoded by the host cell genome. We show that an RNA comprised almost entirely of the CTE of Mason–Pfizer monkey virus (CTE RNA) is exported efficiently from Xenopus oocyte nuclei. The CTE RNA and an RNA containing the RRE of HIV‐1 (plus Rev) have little effect on export of one another, demonstrating differences in host cell requirements of these two viral mRNA export pathways. Surprisingly, even very low amounts of CTE RNA block export of normal mRNAs, apparently through the sequestration of cellular mRNA export factors. Export of a CTE‐containing lariat occurs when wild‐type CTE, but not a mutant form, is inserted into the pre‐mRNA. The CTE has two symmetric structures, either of which supports export and the titration of mRNA export factors, but both of which are required for maximal inhibition of mRNA export. Two host proteins bind specifically to the CTE but not to non‐functional variants, making these proteins candidates for the sequestered mRNA export factors.


Critical Reviews in Biochemistry and Molecular Biology | 2013

MicroRNA biogenesis: regulating the regulators

Emily F. Finnegan; Amy E. Pasquinelli

MicroRNAs (miRNAs) function as 21–24 nucleotide guide RNAs that use partial base-pairing to recognize target messenger RNAs and repress their expression. As a large fraction of protein-coding genes are under miRNA control, production of the appropriate level of specific miRNAs at the right time and in the right place is integral to most gene regulatory pathways. MiRNA biogenesis initiates with transcription, followed by multiple processing steps to produce the mature miRNA. Every step of miRNA production is subject to regulation and disruption of these control mechanisms has been linked to numerous human diseases, where the balance between the expression of miRNAs and their targets becomes distorted. Here we review the basic steps of miRNA biogenesis and describe the various factors that control miRNA transcription, processing, and stability in animal cells. The tremendous effort put into producing the appropriate type and level of specific miRNAs underscores the critical role of these small RNAs in gene regulation.

Collaboration


Dive into the Amy E. Pasquinelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gene W. Yeo

University of California

View shared research outputs
Top Co-Authors

Avatar

Frank J. Slack

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vanessa Mondol

University of California

View shared research outputs
Top Co-Authors

Avatar

Zoya S. Kai

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge