Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy E. Shannon is active.

Publication


Featured researches published by Amy E. Shannon.


Comparative Biochemistry and Physiology B | 2010

Identification of protein carbonyls in serum of the fetal and neonatal pig

Thomas J. Caperna; Amy E. Shannon; Le Ann Blomberg; Wesley M. Garrett; T.G. Ramsay

Oxidation of serum proteins leads to non-reversible carbonyl formation which alters their function and is associated with stress-related disease processes. The primary objective of this study was to quantify and identify oxidized serum proteins in fetal and newborn piglets. Protein carbonyls were converted to hydrazones with dinitrophenyl hydrazine and quantified spectrophotometrically. For identification, serum protein carbonyls were derivatized with biotin hydrazide, separated by 2D PAGE and stained with FITC-avidin. Biotin-labeled proteins were excised from gels and identified by mass spectrometry. At birth, carbonyls were determined to be approximately 600 pmole/mg serum protein. Fetuses at 50 and 100 days of gestation had similar levels of protein carbonyls as newborns. Carbonyl levels were also similar for control and runt (<1 kg at birth) piglets between 1 and 21 days of age; however, distribution of many proteins varied by age and was also influenced by birth weight. Major oxidized proteins identified in fetal (f) and newborn (n) pigs included; albumin (f, n), transferrin (f, n), fetuin-A (f, n) alpha fetoprotein (f, n), plasminogen (f, n), fetuin-B (f), alpha-1-antitrypsin (f, n) alpha-1-acid glycoprotein (f) and immunoglobulins (n). While abundance and distribution of oxidized proteins changed over time, these changes appear to primarily reflect relative amounts of those proteins in serum.


Domestic Animal Endocrinology | 2008

A gel-based reference map of the porcine hepatocyte proteome

Thomas J. Caperna; Amy E. Shannon; Wesley M. Garrett

The overall goal of our research is to characterize and identify gene expression profiles of porcine hepatic cells. In this study, we have prepared two-dimensional electrophoresis maps of cytosol and membrane fractions from freshly prepared hepatocytes which were pooled from three crossbred pigs (35-69kg). Following isoelectric focusing with three pH range immobilized pH gradient strips (pH 3-6, 5-8 and 7-10) and staining the second dimension gels with colloidal Coomassie blue, 728 protein spots were picked and digested with trypsin. Extracted tryptic peptides were initially subjected to matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) analysis for identification of proteins by peptide mass fingerprinting (PMF). Proteins which were not identified by PMF were analyzed by liquid chromatography-tandem MS. Utilizing publicly available databases [NCBInr, Swiss Prot and expressed sequence tags (EST)], 648 proteins were identified. Of those, 282 were unique proteins and greater than 90% of proteins spots contained single proteins. These data represent the first comprehensive proteomic analysis of porcine hepatocytes and will provide a database for future investigations of endocrine regulation of gene expression and metabolic processes in vitro.


Domestic Animal Endocrinology | 2007

Identification and characterization of aquaporin-9 (AQP9) in porcine hepatic tissue and hepatocytes in monolayer culture☆

Thomas J. Caperna; Amy E. Shannon; Mark P. Richards; Wesley M. Garrett; Neil C. Talbot

Aquaporins (AQPs) are members of a large family of integral membrane proteins involved in the rapid movement of water and neutral solutes across cell membranes. In this study, we have prepared an affinity-purified porcine-specific polyclonal antiserum to AQP9 and have investigated the distribution and expression of AQP9 in pig liver tissue and in hepatocytes in primary culture. Immunocytochemical analysis showed that AQP9 was primarily localized in the membrane structures of hepatocytes and was not associated with intrahepatic bile ducts or blood vessels. Western blot analysis indicated that AQP9 ranged in apparent molecular mass between 27 and 38 kD in whole liver and hepatocyte membrane fractions; minor components were also observed at approximately 34 kD in the cytosol compartment of hepatocytes, bile duct and gall bladder. A prominent immunoreactive band at 44 kD was shown to be an artifact of Western blot analysis. In primary cultures of porcine hepatocytes, glucagon enhanced absolute levels of AQP9 protein, while gene expression was enhanced by T3 and glucagon. Insulin alone had no discernable influence on AQP9 gene expression or its cellular protein levels. These data suggest that AQP9 is a major AQP in porcine hepatic tissue and appears to be primarily responsive to glucagon induction.


Domestic Animal Endocrinology | 2013

Identification and characterization of a nuclear factor-κ B-p65 proteolytic fragment in nuclei of porcine hepatocytes in monolayer culture.

Thomas J. Caperna; Amy E. Shannon; Wesley M. Garrett; T.G. Ramsay; Le Ann Blomberg; T.H. Elsasser

Hepatic responses to proinflammatory signals are controlled by the activation of several transcription factors, including, nuclear factor-κ B (NF-κB). In this study, hepatocytes prepared from suckling pigs and maintained in serum-free monolayer culture were used to define a novel proinflammatory cytokine-specific NF-κB subunit modification. The immunoreactive p65 protein was detected by Western blot analysis at the appropriate molecular weight in the cytosol of control cultures and those incubated with tumor necrosis factor-α (TNF). However, in nuclei, the p65 antisera cross-reacted with a protein of approximately 38 kDa (termed p38) after TNF addition, which was not observed in the cytosol of control or cytokine-treated cells. Specifically, incubation with TNF also resulted in phosphorylation (P < 0.05) of the inhibitor complex protein (IκB), whereas incubation with other cytokines, IL-6, IL-17a, or oncostatin M was not associated with either phosphorylation of IκB or nuclear translocation of p65. Intracellular endothelial nitric oxide synthase was deceased (P < 0.05) and plasminogen activator inhibitor-1 secretion was increased (P < 0.05) after TNF incubation. The TNF-induced p38 protein was purified from hepatocyte nuclei by immunoprecipitation, concentrated by electrophoresis, and subsequently analyzed by mass spectrometry. Ten unique NF-κB p65 peptides were identified after digestion with trypsin and chymotrypsin; however, all were mapped to the N-terminus and within the first 310 amino acid residues of the intact p65 protein. Although low molecular weight immunoreactive p65 molecules were previously observed in various human and rodent systems, this is the first report to positively identify the p38 fragment within hepatocyte nuclei or after specific cytokine (TNF) induction.


Domestic Animal Endocrinology | 2015

Regulation of alpha-1 acid glycoprotein synthesis by porcine hepatocytes in monolayer culture.

Thomas J. Caperna; Amy E. Shannon; M. J. Stoll; Le Ann Blomberg; T.G. Ramsay

Alpha-1 acid glycoprotein (AGP, orosomucoid, ORM-1) is a highly glycosylated mammalian acute-phase protein, which is synthesized primarily in the liver and represents the major serum protein in newborn pigs. Recent data have suggested that the pig is unique in that AGP is a negative acute-phase protein in this species, and its circulating concentration appears to be associated with growth rate. The purpose of the present study was to investigate the regulation of AGP synthesis in hepatocytes prepared from suckling piglets and to provide a framework to compare its regulation with that of haptoglobin (HP), a positive acute-phase protein. Hepatocytes were isolated from preweaned piglets and maintained in serum-free monolayer culture for up to 72 h. The influences of hormones, cytokines, and redox modifiers on the expression and secretion of AGP and HP were determined by relative polymerase chain reaction and by measuring the concentration of each protein secreted into culture medium. The messenger RNA abundance and/or secretion of AGP protein was enhanced by interleukin (IL)-17a, IL-1, and resveratrol and inhibited by tumor necrosis factor-α (TNF), oncostatin M, and thyroid hormone (P < 0.05). HP expression and synthesis were upregulated by oncostatin M, IL-6, and dexamethasone and downregulated by TNF (P < 0.01). The overall messenger RNA expression at 24 h was in agreement with the secreted protein patterns confirming that control of these proteins in hepatocytes is largely transcriptional. Moreover, these data support the consideration that AGP is a negative acute-phase reactant and appears to be regulated by cytokines (with the exception of TNF) and hormones primarily in a manner opposite to that of the positive acute-phase protein, HP.


Poultry Science | 2018

Finite cell lines of turkey sperm storage tubule cells: ultrastructure and protein analysis

Neil C. Talbot; Katina V Krasnec; Wesley M. Garrett; Amy E. Shannon; Julie A Long

Abstract Cell lines of turkey sperm storage tubule (SST) epithelial cells were established. Turkey SSTs were dissected from freshly obtained uterovaginal junction (UVJ) tissue and placed in explant culture on various substrates and media. Primary cultures of SST epithelium only survived and grew from SST explants that were cultured on inactivated Sandoz inbred strain, thioguanine- and ouabain-resistance (STO) mouse feeder-cell layers in 12% fetal bovine serum-supplemented Dulbeccos Modified Eagle Medium mixed 1:1 with F12 nutrient mixture. Three independent primary colonies gave rise to 3 finite cell lines, SST-1, -2, and -3, which were continuously cultured for 8 to 16 passages at 1:3 passage ratios over a period of 3 to 4 mo. The cells were passaged by pretreatment with Y27632 and dissociation with Accutase. The SST cells grew as tightly knit monolayers on top of the feeder cells at a slow rate (approximately 96 h doubling time) at a medium pH of approximately 6.9. Lipid vacuoles were visible by light microscopy in the cells particularly at the periphery of growth. Transmission electron microscopy revealed the cells to be a polarized epithelium with apical microvilli and to have lateral tight-junction-like unions and associated desmosomes. Numerous secretory vesicles filled the upper portion of the cells’ cytoplasm, and nuclei and other major organelles such as mitochondria, rough endoplasmic reticulum, and Golgi apparatus were distributed somewhat lower in the cytoplasm. The secretory vesicles resembled mucin secretory vesicles. Proteomic analysis by mass spectroscopy of the conditioned medium of the cells, and of the cells themselves, showed the cell lines did not secrete large amounts of any particular protein, and the analysis confirmed their epithelial character. In conclusion, the SST-derived cell lines resembled the mucus-secreting cells found in the epithelium lining the UVJ of the turkeys reproductive tract.


In Vitro Cellular & Developmental Biology – Animal | 2018

Feeder-cell-independent culture of the pig embryonic stem cell-derived exocrine pancreatic cell line, PICM-31

Neil C. Talbot; Amy E. Shannon; Caitlin E. Phillips; Wesley M. Garrett

The adaptation to feeder-independent growth of a pig embryonic stem cell-derived pancreatic cell line is described. The parental PICM-31 cell line, previously characterized as an exocrine pancreas cell line, was colony-cloned two times in succession resulting in the derivative cell line, PICM-31A1. PICM-31A1 cells were adapted to growth on a polymerized collagen matrix using feeder cell-conditioned medium and were designated PICM-31FF. Like the parental cells, the PICM-31FF cells were small and grew relatively slowly in closely knit colonies that eventually coalesced into a continuous monolayer. The PICM-31FF cells were extensively cultured: 40 passages at 1:2, 1:3, and finally 1:5 split ratios over a 1-yr period. Ultrastructure analysis showed the cells’ epithelial morphology and revealed that they retained their secretory granules typical of pancreas acinar cells. The cells maintained their expression of digestive enzymes, including carboxypeptidase A1 (CPA1), amylase 2A (AMY2A), and phospholipase A2 (PLA2G1B). Alpha-fetoprotein (AFP), a fetal cell marker, continued to be expressed by the cells as was the pancreas alpha cell-associated gene, transthyretin. Several pancreas-associated developmental genes were also expressed by the cells, including pancreatic and duodenal homeobox 1 (PDX1) and pancreas-specific transcription factor, 1a (PTF1A). Proteomic analysis of cellular proteins confirmed the cells’ production of digestive enzymes and showed that the cells expressed cytokeratin-8 and cytokeratin-18. The PICM-31FF cell line provides an in vitro model of fetal pig pancreatic exocrine cells without the complicating presence of feeder cells.


Domestic Animal Endocrinology | 2004

The role of insulin, glucagon, dexamethasone, and leptin in the regulation of ketogenesis and glycogen storage in primary cultures of porcine hepatocytes prepared from 60 kg pigs ☆

I. Fernández-Fígares; Amy E. Shannon; Diane Wray-Cahen; Thomas J. Caperna


Domestic Animal Endocrinology | 2005

Hormonal regulation of leptin receptor expression in primary cultures of porcine hepatocytes

Thomas J. Caperna; Amy E. Shannon; S.M. Poch; Wesley M. Garrett; Mark P. Richards


Pancreas | 2017

Derivation and Characterization of a Pig Embryonic-Stem-Cell–Derived Exocrine Pancreatic Cell Line

Neil C. Talbot; Amy E. Shannon; Caitlin E. Phillips; Wesley M. Garrett

Collaboration


Dive into the Amy E. Shannon's collaboration.

Top Co-Authors

Avatar

Wesley M. Garrett

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Thomas J. Caperna

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Le Ann Blomberg

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Neil C. Talbot

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

T.G. Ramsay

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Caitlin E. Phillips

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

M. J. Stoll

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Mark P. Richards

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Diane Wray-Cahen

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Julie A Long

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge