Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy G. Hise is active.

Publication


Featured researches published by Amy G. Hise.


Cell Host & Microbe | 2009

An Essential Role for the NLRP3 Inflammasome in Host Defense against the Human Fungal Pathogen Candida albicans

Amy G. Hise; Jeffrey Tomalka; Sandhya Ganesan; Krupen Patel; Brian Hall; Gordon D. Brown; Katherine A. Fitzgerald

Candida albicans is an opportunistic fungal pathogen causing life-threatening mucosal and systemic infections in immunocompromised humans. Using a murine model of mucosal Candida infection, we investigated the role of the proinflammatory cytokine IL-1beta in host defense to Candida albicans. We find that the synthesis, processing, and release of IL-1beta in response to Candida are tightly controlled and first require transcriptional induction, followed by a second signal leading to caspase-1-mediated cleavage of the pro-IL-1beta cytokine. The known fungal pattern recognition receptors TLR2 and Dectin-1 regulate IL-1beta gene transcription, whereas the NLRP3-containing proinflammatory multiprotein complex, the NLRP3 inflammasome, controls caspase-1-mediated cleavage of pro-IL-1beta. Furthermore, we show that TLR2, Dectin-1, and NLRP3 are essential for defense against dissemination of mucosal infection and mortality in vivo. Therefore, in addition to sensing bacterial and viral pathogens, the NLRP3 inflammasome senses fungal pathogens and is critical in host defense against Candida.


The Journal of Neuroscience | 2009

CD14 and Toll-Like Receptors 2 and 4 Are Required for Fibrillar Aβ-Stimulated Microglial Activation

Erin G. Reed-Geaghan; Julie C. Savage; Amy G. Hise; Gary E. Landreth

Microglia are the brains tissue macrophages and are found in an activated state surrounding β-amyloid plaques in the Alzheimers disease brain. Microglia interact with fibrillar β-amyloid (fAβ) through an ensemble of surface receptors composed of the α6β1 integrin, CD36, CD47, and the class A scavenger receptor. These receptors act in concert to initiate intracellular signaling cascades and phenotypic activation of these cells. However, it is unclear how engagement of this receptor complex is linked to the induction of an activated microglial phenotype. We report that the response of microglial cells to fibrillar forms of Aβ requires the participation of Toll-like receptors (TLRs) and the coreceptor CD14. The response of microglia to fAβ is reliant upon CD14, which act together with TLR4 and TLR2 to bind fAβ and to activate intracellular signaling. We find that cells lacking these receptors could not initiate a Src-Vav-Rac signaling cascade leading to reactive oxygen species production and phagocytosis. The fAβ-mediated activation of p38 MAPK also required CD14, TLR4, and TLR2. Inhibition of p38 abrogated fAβ-induced reactive oxygen species production and attenuated the induction of phagocytosis. Microglia lacking CD14, TLR4, and TLR2 showed no induction of phosphorylated IκBα following fAβ. These data indicate these innate immune receptors function as members of the microglial fAβ receptor complex and identify the signaling mechanisms whereby they contribute to microglial activation.


PLOS Pathogens | 2011

A Novel Role for the NLRC4 Inflammasome in Mucosal Defenses against the Fungal Pathogen Candida albicans

Jeffrey Tomalka; Sandhya Ganesan; Elaheh Azodi; Krupen Patel; Parth Majmudar; Brian Hall; Katherine A. Fitzgerald; Amy G. Hise

Candida sp. are opportunistic fungal pathogens that colonize the skin and oral cavity and, when overgrown under permissive conditions, cause inflammation and disease. Previously, we identified a central role for the NLRP3 inflammasome in regulating IL-1β production and resistance to dissemination from oral infection with Candida albicans. Here we show that mucosal expression of NLRP3 and NLRC4 is induced by Candida infection, and up-regulation of these molecules is impaired in NLRP3 and NLRC4 deficient mice. Additionally, we reveal a role for the NLRC4 inflammasome in anti-fungal defenses. NLRC4 is important for control of mucosal Candida infection and impacts inflammatory cell recruitment to infected tissues, as well as protects against systemic dissemination of infection. Deficiency in either NLRC4 or NLRP3 results in severely attenuated pro-inflammatory and antimicrobial peptide responses in the oral cavity. Using bone marrow chimeric mouse models, we show that, in contrast to NLRP3 which limits the severity of infection when present in either the hematopoietic or stromal compartments, NLRC4 plays an important role in limiting mucosal candidiasis when functioning at the level of the mucosal stroma. Collectively, these studies reveal the tissue specific roles of the NLRP3 and NLRC4 inflammasome in innate immune responses against mucosal Candida infection.


Cellular Immunology | 2009

TLR2 and its co-receptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis

Michael G. Drage; Nicole D. Pecora; Amy G. Hise; Maria Febbraio; Roy L. Silverstein; Douglas T. Golenbock; W. Henry Boom; Clifford V. Harding

Mycobacterium tuberculosis (Mtb) signals through Toll-like receptor 2 (TLR2) to regulate antigen presenting cells (APCs). Mtb lipoproteins, including LpqH, LprA, LprG and PhoS1, are TLR2 agonists, but their co-receptor requirements are unknown. We studied Mtb lipoprotein-induced responses in TLR2(-/-), TLR1(-/-), TLR6(-/-), CD14(-/-) and CD36(-/-) macrophages. Responses to LprA, LprG, LpqH and PhoS1 were completely dependent on TLR2. LprG, LpqH, and PhoS1 were dependent on TLR1, but LprA did not require TLR1. None of the lipoproteins required TLR6, although a redundant contribution by TLR6 cannot be excluded. CD14 contributed to detection of LprA, LprG and LpqH, whereas CD36 contributed only to detection of LprA. Studies of lung APC subsets revealed lower TLR2 expression by CD11b(high)/CD11c(low) lung macrophages than CD11b(low)/CD11c(high) alveolar macrophages, which correlated with hyporesponsiveness of lung macrophages to LpqH. Thus, lung APC subsets differ in TLR expression, which may determine differences in responses to Mtb.


Journal of Immunology | 2007

Innate Immune Responses to Endosymbiotic Wolbachia Bacteria in Brugia malayi and Onchocerca volvulus Are Dependent on TLR2, TLR6, MyD88, and Mal, but Not TLR4, TRIF, or TRAM

Amy G. Hise; Katrin Daehnel; Illona Gillette-Ferguson; Eun Wie Cho; Helen F. McGarry; Mark J. Taylor; Douglas T. Golenbock; Katherine A. Fitzgerald; James W. Kazura; Eric Pearlman

The discovery that endosymbiotic Wolbachia bacteria play an important role in the pathophysiology of diseases caused by filarial nematodes, including lymphatic filariasis and onchocerciasis (river blindness) has transformed our approach to these disabling diseases. Because these parasites infect hundreds of millions of individuals worldwide, understanding host factors involved in the pathogenesis of filarial-induced diseases is paramount. However, the role of early innate responses to filarial and Wolbachia ligands in the development of filarial diseases has not been fully elucidated. To determine the role of TLRs, we used cell lines transfected with human TLRs and macrophages from TLR and adaptor molecule-deficient mice and evaluated macrophage recruitment in vivo. Extracts of Brugia malayi and Onchocerca volvulus, which contain Wolbachia, directly stimulated human embryonic kidney cells expressing TLR2, but not TLR3 or TLR4. Wolbachia containing filarial extracts stimulated cytokine production in macrophages from C57BL/6 and TLR4−/− mice, but not from TLR2−/− or TLR6−/− mice. Similarly, macrophages from mice deficient in adaptor molecules Toll/IL-1R domain-containing adaptor-inducing IFN-β and Toll/IL-1R domain-containing adaptor-inducing IFN-β-related adaptor molecule produced equivalent cytokines as wild-type cells, whereas responses were absent in macrophages from MyD88−/− and Toll/IL-1R domain-containing adaptor protein (TIRAP)/MyD88 adaptor-like (Mal) deficient mice. Isolated Wolbachia bacteria demonstrated similar TLR and adaptor molecule requirements. In vivo, macrophage migration to the cornea in response to filarial extracts containing Wolbachia was dependent on TLR2 but not TLR4. These results establish that the innate inflammatory pathways activated by endosymbiotic Wolbachia in B. malayi and O. volvulus filaria are dependent on TLR2-TLR6 interactions and are mediated by adaptor molecules MyD88 and TIRAP/Mal.


Journal of Immunology | 2015

Neutrophil IL-1β Processing Induced by Pneumolysin Is Mediated by the NLRP3/ASC Inflammasome and Caspase-1 Activation and Is Dependent on K+ Efflux

Mausita Karmakar; Michael A. Katsnelson; Hesham A. Malak; Neil G. Greene; Scott J. Howell; Amy G. Hise; Andrew Camilli; Aras Kadioglu; George R. Dubyak; Eric Pearlman

Although neutrophils are the most abundant cells in acute infection and inflammation, relatively little attention has been paid to their role in inflammasome formation and IL-1β processing. In the present study, we investigated the mechanism by which neutrophils process IL-1β in response to Streptococcus pneumoniae. Using a murine model of S. pneumoniae corneal infection, we demonstrated a requirement for IL-1β in bacterial clearance, and we showed that Nod-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), and caspase-1 are essential for IL-1β production and bacterial killing in the cornea. Neutrophils in infected corneas had multiple specks with enzymatically active caspase-1 (YVAD-FLICA 660), and bone marrow neutrophils stimulated with heat-killed S. pneumoniae (signal 1) and pneumolysin (signal 2) exhibited multiple specks when stained for NLRP3, ASC, or Caspase-1. High–molecular mass ASC complexes were also detected, consistent with oligomer formation. Pneumolysin induced K+ efflux in neutrophils, and blocking K+ efflux inhibited caspase-1 activation and IL-1β processing; however, neutrophils did not undergo pyroptosis, indicating that K+ efflux and IL-1β processing is not a consequence of cell death. There was also no role for lysosomal destabilization or neutrophil elastase in pneumolysin-mediated IL-1β processing in neutrophils. Taken together, these findings demonstrate an essential role for neutrophil-derived IL-1β in S. pneumoniae infection, and they elucidate the role of the NLRP3 inflammasome in cleavage and secretion of IL-1β in neutrophils. Given the ubiquitous presence of neutrophils in acute bacterial and fungal infections, these findings will have implications for other microbial diseases.


The Journal of Infectious Diseases | 2001

A Whole Blood Bactericidal Assay for Tuberculosis

Robert S. Wallis; Moises Palaci; Solange Alves Vinhas; Amy G. Hise; Fabíola C. Ribeiro; Katherine Landen; Seon-Hee Cheon; Ho-Yeon Song; Manijeh Phillips; Reynaldo Dietze; Jerrold J. Ellner

The bactericidal activity of orally administered antituberculosis (anti-TB) drugs was determined in a whole blood culture model of intracellular infection in which microbial killing reflects the combined effects of drug and immune mechanisms. Rifampin (Rif) was the most active compound studied and reduced the number of viable bacilli by >4 logs. Isoniazid (INH), 2 quinolones, and pyrazinamide (PZA) showed intermediate levels of activity. Ethambutol exerted only a bacteristatic effect; amoxicillin/clavulanate was inactive. The combination of INH-Rif-PZA showed strong activity against 11 drug-sensitive isolates (mean, -3.8 log) but no activity against 12 multidrug-resistant (MDR) strains. The combination of levofloxacin-PZA-ethambutol had intermediate bactericidal activity against MDR isolates (mean, -1.2 log) but failed to equal that of INH-Rif-PZA against sensitive isolates (P<.001). The whole blood BACTEC method (Becton Dickinson) may be useful for the early clinical evaluation of new anti-TB drugs and in the management of individual patients.


Infection and Immunity | 2006

Staphylococcus aureus-Induced Corneal Inflammation Is Dependent on Toll-Like Receptor 2 and Myeloid Differentiation Factor 88

Yan Sun; Amy G. Hise; Carolyn M. Kalsow; Eric Pearlman

ABSTRACT Toll-like receptors (TLRs) expressed by the corneal epithelium represent a first line of host defense to microbial keratitis. The current study examined the role of TLR2, TLR4, and TLR9 and the common adaptor molecule myeloid differentiation factor 88 (MyD88) in a Staphylococcus aureus model of corneal inflammation. The corneal epithelia of C57BL/6, TLR2−/−, TLR4−/−, TLR9−/−, and MyD88−/− mice were abraded using a trephine and epithelial brush and were exposed to heat- or UV-inactivated S. aureus clinical strain 8325-4 and other clinical isolates. Corneal thickness and haze were measured by in vivo confocal microscopy, neutrophil recruitment to the corneal stroma was quantified by immunohistochemistry, and cytokine production was measured by enzyme-linked immunosorbent assay. The exposure of corneal epithelium to S. aureus induced neutrophil recruitment to the corneal stroma and increased corneal thickness and haze in control C57BL/6 mice but not in TLR2−/− or MyD88−/− mice. The responses of TLR4−/− and TLR9−/− mice were similar to those of C57BL/6 mice. S. aureus-induced cytokine production by corneal epithelial cells and neutrophils was also significantly reduced in TLR2−/− mice compared with that in C57BL/6 mice. These findings indicate that S. aureus-induced corneal inflammation is mediated by TLR2 and MyD88 in resident epithelial cells and infiltrating neutrophils.


Journal of Biological Chemistry | 2010

Bacterial Pathogen-associated Molecular Patterns Stimulate Biological Activity of Orthopaedic Wear Particles by Activating Cognate Toll-like Receptors

Edward M. Greenfield; Michelle A. Beidelschies; Joscelyn M. Tatro; Victor M. Goldberg; Amy G. Hise

Aseptic loosening of orthopaedic implants is induced by wear particles generated from the polymeric and metallic components of the implants. Substantial evidence suggests that activation of Toll-like receptors (TLRs) may contribute to the biological activity of the wear particles. Although pathogen-associated molecular patterns (PAMPs) produced by Gram-positive bacteria are likely to be more common in patients with aseptic loosening, prior studies have focused on LPS, a TLR4-specific PAMP produced by Gram-negative bacteria. Here we show that both TLR2 and TLR4 contribute to the biological activity of titanium particles with adherent bacterial debris. In addition, lipoteichoic acid, a PAMP produced by Gram-positive bacteria that activates TLR2, can, like LPS, adhere to the particles and increase their biological activity, and the increased biological activity requires the presence of the cognate TLR. Moreover, three lines of evidence support the conclusion that TLR activation requires bacterially derived PAMPs and that endogenously produced alarmins are not sufficient. First, neither TLR2 nor TLR4 contribute to the activity of “endotoxin-free” particles as would be expected if alarmins are sufficient to activate the TLRs. Second, noncognate TLRs do not contribute to the activity of particles with adherent LPS or lipoteichoic acid as would be expected if alarmins are sufficient to activate the TLRs. Third, polymyxin B, which inactivates LPS, blocks the activity of particles with adherent LPS. These results support the hypothesis that PAMPs produced by low levels of bacterial colonization may contribute to aseptic loosening of orthopaedic implants.


Journal of Immunology | 2012

Cutting Edge: IL-1β Processing during Pseudomonas aeruginosa Infection Is Mediated by Neutrophil Serine Proteases and Is Independent of NLRC4 and Caspase-1

Mausita Karmakar; Yan Sun; Amy G. Hise; Arne Rietsch; Eric Pearlman

To examine the role of caspase-1 and the NLRC4 inflammasome during bacterial infection, C57BL/6, IL-1β−/−, caspase-1−/−, and NLRC4−/− mouse corneas were infected with ExoS/T- or ExoU-expressing Pseudomonas aeruginosa. We found that IL-1β was essential for neutrophil recruitment and bacterial clearance and was produced by myeloid cells rather than resident cells. In addition, neutrophils were found to be the primary source of mature IL-1β during infection, and there was no significant difference in IL-1β processing between C57BL/6 and caspase-1−/− or NLRC4−/− infected corneas. IL-1β cleavage by human and mouse neutrophils was blocked by serine protease inhibitors and was impaired in infected neutrophil elastase (NE)−/− corneas. NE−/− mice also had an impaired ability to clear the infection. Together, these results demonstrate that during P. aeruginosa infection, neutrophils are the primary source of mature IL-1β and that IL-1β processing is dependent on serine proteases and not NLRC4 or caspase-1.

Collaboration


Dive into the Amy G. Hise's collaboration.

Top Co-Authors

Avatar

Eric Pearlman

University of California

View shared research outputs
Top Co-Authors

Avatar

Yan Sun

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Illona Gillette-Ferguson

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Katherine A. Fitzgerald

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Charles H. King

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Eugenia Diaconu

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Zachary Traylor

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric M. Muchiri

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

James W. Kazura

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge