Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy Kutschke is active.

Publication


Featured researches published by Amy Kutschke.


Antimicrobial Agents and Chemotherapy | 2005

Compound Efflux in Helicobacter pylori

Amy Kutschke; Boudewijn L. M. de Jonge

ABSTRACT Susceptibility testing with a variety of structurally unrelated compounds showed that hefC in Helicobacter pylori is involved in multidrug efflux. This efflux was shown to depend on the proton motive force, as demonstrated by ethidium bromide accumulation experiments. Thus, H. pylori contains an active multidrug efflux mechanism.


Antimicrobial Agents and Chemotherapy | 2015

In Vitro Antibacterial Activity of AZD0914: A New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-Positive, Fastidious Gram-Negative, and Atypical Bacteria

Michael D. Huband; Patricia A. Bradford; Linda G. Otterson; Gregory Basarab; Amy Kutschke; Robert A. Giacobbe; Sara A. Patey; Richard A. Alm; Marie E. Potter; Paul F. Miller; John P. Mueller

ABSTRACT AZD0914 is a new spiropyrimidinetrione bacterial DNA gyrase/topoisomerase inhibitor with potent in vitro antibacterial activity against key Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Streptococcus pyogenes, and Streptococcus agalactiae), fastidious Gram-negative (Haemophilus influenzae and Neisseria gonorrhoeae), atypical (Legionella pneumophila), and anaerobic (Clostridium difficile) bacterial species, including isolates with known resistance to fluoroquinolones. AZD0914 works via inhibition of DNA biosynthesis and accumulation of double-strand cleavages; this mechanism of inhibition differs from those of other marketed antibacterial compounds. AZD0914 stabilizes and arrests the cleaved covalent complex of gyrase with double-strand broken DNA under permissive conditions and thus blocks religation of the double-strand cleaved DNA to form fused circular DNA. Whereas this mechanism is similar to that seen with fluoroquinolones, it is mechanistically distinct. AZD0914 exhibited low frequencies of spontaneous resistance in S. aureus, and if mutants were obtained, the mutations mapped to gyrB. Additionally, no cross-resistance was observed for AZD0914 against recent bacterial clinical isolates demonstrating resistance to fluoroquinolones or other drug classes, including macrolides, β-lactams, glycopeptides, and oxazolidinones. AZD0914 was bactericidal in both minimum bactericidal concentration and in vitro time-kill studies. In in vitro checkerboard/synergy testing with 17 comparator antibacterials, only additivity/indifference was observed. The potent in vitro antibacterial activity (including activity against fluoroquinolone-resistant isolates), low frequency of resistance, lack of cross-resistance, and bactericidal activity of AZD0914 support its continued development.


Scientific Reports | 2015

Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial Type II topoisomerases.

Gregory S. Basarab; Gunther Kern; John McNulty; John P. Mueller; Kenneth Lawrence; Karthick Vishwanathan; Richard A. Alm; Kevin Barvian; Peter Doig; Vincent Galullo; Humphrey Gardner; Madhusudhan Gowravaram; Michael D. Huband; Amy Kimzey; Marshall Morningstar; Amy Kutschke; Sushmita D. Lahiri; Manos Perros; Renu Singh; Virna J. A. Schuck; Ruben Tommasi; Grant K. Walkup; Joseph V. Newman

With the diminishing effectiveness of current antibacterial therapies, it is critically important to discover agents that operate by a mechanism that circumvents existing resistance. ETX0914, the first of a new class of antibacterial agent targeted for the treatment of gonorrhea, operates by a novel mode-of-inhibition against bacterial type II topoisomerases. Incorporating an oxazolidinone on the scaffold mitigated toxicological issues often seen with topoisomerase inhibitors. Organisms resistant to other topoisomerase inhibitors were not cross-resistant with ETX0914 nor were spontaneous resistant mutants to ETX0914 cross-resistant with other topoisomerase inhibitor classes, including the widely used fluoroquinolone class. Preclinical evaluation of ETX0914 pharmacokinetics and pharmacodynamics showed distribution into vascular tissues and efficacy in a murine Staphylococcus aureus infection model that served as a surrogate for predicting efficacious exposures for the treatment of Neisseria gonorrhoeae infections. A wide safety margin to the efficacious exposure in toxicological evaluations supported progression to Phase 1. Dosing ETX0914 in human volunteers showed sufficient exposure and minimal adverse effects to expect a highly efficacious anti-gonorrhea therapy.


Antimicrobial Agents and Chemotherapy | 2015

Characterization of the novel DNA gyrase inhibitor AZD0914: Low resistance potential and lack of cross-resistance in Neisseria gonorrhoeae.

Richard A. Alm; Sushmita D. Lahiri; Amy Kutschke; Linda G. Otterson; Robert E. McLaughlin; James Whiteaker; Lisa A. Lewis; Xiao-Hong Su; Michael D. Huband; Humphrey Gardner; John P. Mueller

ABSTRACT The unmet medical need for novel intervention strategies to treat Neisseria gonorrhoeae infections is significant and increasing, as rapidly emerging resistance in this pathogen is threatening to eliminate the currently available treatment options. AZD0914 is a novel bacterial gyrase inhibitor that possesses potent in vitro activities against isolates with high-level resistance to ciprofloxacin and extended-spectrum cephalosporins, and it is currently in clinical development for the treatment of N. gonorrhoeae infections. The propensity to develop resistance against AZD0914 was examined in N. gonorrhoeae and found to be extremely low, a finding supported by similar studies with Staphylococcus aureus. The genetic characterization of both first-step and second-step mutants that exhibited decreased susceptibilities to AZD0914 identified substitutions in the conserved GyrB TOPRIM domain, confirming DNA gyrase as the primary target of AZD0914 and providing differentiation from fluoroquinolones. The analysis of available bacterial gyrase and topoisomerase IV structures, including those bound to fluoroquinolone and nonfluoroquinolone inhibitors, has allowed the rationalization of the lack of cross-resistance that AZD0914 shares with fluoroquinolones. Microbiological susceptibility data also indicate that the topoisomerase inhibition mechanisms are subtly different between N. gonorrhoeae and other bacterial species. Taken together, these data support the progression of AZD0914 as a novel treatment option for the oral treatment of N. gonorrhoeae infections.


Antimicrobial Agents and Chemotherapy | 2009

Pyrazolopyrimidinediones Are Selective Agents for Helicobacter pylori That Suppress Growth through Inhibition of Glutamate Racemase (MurI)

B. L. M. De Jonge; Amy Kutschke; Maria Uria-Nickelsen; H. D. Kamp; Scott D. Mills

ABSTRACT Pyrazolopyrimidinediones are a novel series of compounds that inhibit growth of Helicobacter pylori specifically. Using a variety of methods, advanced analogues were shown to suppress the growth of H. pylori through the inhibition of glutamate racemase, an essential enzyme in peptidoglycan biosynthesis. The high degree of selectivity of the series for H. pylori makes these compounds attractive candidates for novel H. pylori-selective therapy.


Journal of Medicinal Chemistry | 2015

Discovery of Novel DNA Gyrase Inhibiting Spiropyrimidinetriones: Benzisoxazole Fusion with N-Linked Oxazolidinone Substituents Leading to a Clinical Candidate (ETX0914).

Gregory S. Basarab; Peter Doig; Vincent Galullo; Gunther Kern; Amy Kimzey; Amy Kutschke; Joseph P. Newman; Marshall Morningstar; John E. Mueller; Linda G. Otterson; Karthick Vishwanathan; Fei Zhou; Madhusudhan Gowravaram

A novel class of bacterial type-II topoisomerase inhibitor displaying a spiropyrimidinetrione architecture fused to a benzisoxazole scaffold shows potent activity against Gram-positive and fastidious Gram-negative bacteria. Here, we describe a series of N-linked oxazolidinone substituents on the benzisoxazole that improve upon the antibacterial activity of initially described compounds of the class, show favorable PK properties, and demonstrate efficacy in an in vivo Staphylococcus aureus infection model. Inhibition of the topoisomerases DNA gyrase and topoisomerase IV from both Gram-positive and a Gram-negative organisms was demonstrated. Compounds showed a clean in vitro toxicity profile, including no genotoxicity and no bone marrow toxicity at the highest evaluated concentrations or other issues that have been problematic for some fluoroquinolones. Compound 1u was identified for advancement into human clinical trials for treatment of uncomplicated gonorrhea based on a variety of beneficial attributes including the potent activity and the favorable safety profile.


ACS Chemical Biology | 2012

In Vivo Validation of Thymidylate Kinase (TMK) with a Rationally Designed, Selective Antibacterial Compound

Thomas A. Keating; Joseph V. Newman; Nelson B. Olivier; Linda G. Otterson; Beth Andrews; P. Ann Boriack-Sjodin; John N. Breen; Peter Doig; Jacques Dumas; Eric Gangl; Oluyinka Green; Satenig Guler; Martin F. Hentemann; Diane Joseph-McCarthy; Sameer Kawatkar; Amy Kutschke; James T. Loch; Andrew R. McKenzie; Selvi Pradeepan; Swati Prasad; Gabriel Martinez-Botella

There is an urgent need for new antibacterials that pinpoint novel targets and thereby avoid existing resistance mechanisms. We have created novel synthetic antibacterials through structure-based drug design that specifically target bacterial thymidylate kinase (TMK), a nucleotide kinase essential in the DNA synthesis pathway. A high-resolution structure shows compound TK-666 binding partly in the thymidine monophosphate substrate site, but also forming new induced-fit interactions that give picomolar affinity. TK-666 has potent, broad-spectrum Gram-positive microbiological activity (including activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus), bactericidal action with rapid killing kinetics, excellent target selectivity over the human ortholog, and low resistance rates. We demonstrate in vivo efficacy against S. aureus in a murine infected-thigh model. This work presents the first validation of TMK as a compelling antibacterial target and provides a rationale for pursuing novel clinical candidates for treating Gram-positive infections through TMK.


Antimicrobial Agents and Chemotherapy | 2015

Pharmacodynamic Profiling of a Siderophore-Conjugated Monocarbam in Pseudomonas aeruginosa: Assessing the Risk for Resistance and Attenuated Efficacy

Aryun Kim; Amy Kutschke; David E. Ehmann; Sara A. Patey; Jared L. Crandon; Elise Gorseth; Alita A. Miller; Robert E. McLaughlin; Christina M. Blinn; April Chen; Asha S. Nayar; Brian Dangel; Andy S. Tsai; Michael T. Rooney; Kerry E. Murphy-Benenato; Ann E. Eakin; David P. Nicolau

ABSTRACT The objective of this study was to investigate the risk of attenuated efficacy due to adaptive resistance for the siderophore-conjugated monocarbam SMC-3176 in Pseudomonas aeruginosa by using a pharmacokinetic/pharmacodynamic (PK/PD) approach. MICs were determined in cation-adjusted Mueller-Hinton broth (MHB) and in Chelex-treated, dialyzed MHB (CDMHB). Spontaneous resistance was assessed at 2× to 16× the MIC and the resulting mutants sequenced. Efficacy was evaluated in a neutropenic mouse thigh model at 3.13 to 400 mg/kg of body weight every 3 h for 24 h and analyzed for association with free time above the MIC (fT>MIC). To closer emulate the conditions of the in vivo model, we developed a novel assay testing activity mouse whole blood (WB). All mutations were found in genes related to iron uptake: piuA, piuC, pirR, fecI, and pvdS. Against four P. aeruginosa isolates, SMC-3176 displayed predictable efficacy corresponding to the fT>MIC using the MIC in CDMHB (R2 = 0.968 to 0.985), with stasis to 2-log kill achieved at 59.4 to 81.1%. Efficacy did not translate for P. aeruginosa isolate JJ 4-36, as the in vivo responses were inconsistent with fT>MIC exposures and implied a threshold concentration that was greater than the MIC. The results of the mouse WB assay indicated that efficacy was not predictable using the MIC for JJ 4-36 and four additional isolates, against which in vivo failures of another siderophore-conjugated β-lactam were previously reported. SMC-3176 carries a risk of attenuated efficacy in P. aeruginosa due to rapid adaptive resistance preventing entry via the siderophore-mediated iron uptake systems. Substantial in vivo testing is warranted for compounds using the siderophore approach to thoroughly screen for this in vitro-in vivo disconnect in P. aeruginosa.


Journal of Medicinal Chemistry | 2014

Novel DNA gyrase inhibiting spiropyrimidinetriones with a benzisoxazole scaffold: SAR and in vivo characterization.

Gregory S. Basarab; Patrick Brassil; Peter Doig; Vincent Galullo; Howard B. Haimes; Gunther Kern; Amy Kutschke; John McNulty; Virna J. A. Schuck; Gregory G. Stone; Madhusudhan Gowravaram

The compounds described herein with a spirocyclic architecture fused to a benzisoxazole ring represent a new class of antibacterial agents that operate by inhibition of DNA gyrase as corroborated in an enzyme assay and by the inhibition of precursor thymidine into DNA during cell growth. Activity resided in the configurationally lowest energy (2S,4R,4aR) diastereomer. Highly active compounds against Staphylococcus aureus had sufficiently high solubility, high plasma protein free fraction, and favorable pharmacokinetics to suggest that in vivo efficacy could be demonstrated, which was realized with compound (-)-1 in S. aureus mouse infection models. A high drug exposure NOEL on oral dosing in the rat suggested that a high therapeutic margin could be achieved. Importantly, (-)-1 was not cross-resistant with other DNA gyrase inhibitors such as fluoroquinolone and aminocoumarin antibacterials. Hence, this class shows considerable promise for the treatment of infections caused by multidrug resistant bacteria, including S. aureus.


Antimicrobial Agents and Chemotherapy | 2013

Discovery of inhibitors of 4'-phosphopantetheine adenylyltransferase (PPAT) to validate PPAT as a target for antibacterial therapy.

Boudewijn L. M. de Jonge; Grant K. Walkup; Sushmita D. Lahiri; Hoan Huynh; Georg Neckermann; Luke Utley; Tory Nash; Jesse Brock; Maryann San Martin; Amy Kutschke; Valerie A. Laganas; Laurel Hajec; Rong-Fang Gu; Haihong Ni; Brendan Chen; Kim Marie Hutchings; Elise Holt; David C. McKinney; Ning Gao; Stephania Livchak; Jason Thresher

ABSTRACT Inhibitors of 4′-phosphopantetheine adenylyltransferase (PPAT) were identified through high-throughput screening of the AstraZeneca compound library. One series, cycloalkyl pyrimidines, showed inhibition of PPAT isozymes from several species, with the most potent inhibition of enzymes from Gram-positive species. Mode-of-inhibition studies with Streptococcus pneumoniae and Staphylococcus aureus PPAT demonstrated representatives of this series to be reversible inhibitors competitive with phosphopantetheine and uncompetitive with ATP, binding to the enzyme-ATP complex. The potency of this series was optimized using structure-based design, and inhibition of cell growth of Gram-positive species was achieved. Mode-of-action studies, using generation of resistant mutants with targeted sequencing as well as constructs that overexpress PPAT, demonstrated that growth suppression was due to inhibition of PPAT. An effect on bacterial burden was demonstrated in mouse lung and thigh infection models, but further optimization of dosing requirements and compound properties is needed before these compounds can be considered for progress into clinical development. These studies validated PPAT as a novel target for antibacterial therapy.

Collaboration


Dive into the Amy Kutschke's collaboration.

Researchain Logo
Decentralizing Knowledge