Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy L. Firth is active.

Publication


Featured researches published by Amy L. Firth.


Nature | 2012

Embryonic stem cell potency fluctuates with endogenous retrovirus activity

Todd S. Macfarlan; Wesley D. Gifford; Shawn P. Driscoll; Karen Lettieri; Helen M. Rowe; Dario Bonanomi; Amy L. Firth; Oded Singer; Didier Trono; Samuel L. Pfaff

Embryonic stem (ES) cells are derived from blastocyst-stage embryos and are thought to be functionally equivalent to the inner cell mass, which lacks the ability to produce all extraembryonic tissues. Here we identify a rare transient cell population within mouse ES and induced pluripotent stem (iPS) cell cultures that expresses high levels of transcripts found in two-cell (2C) embryos in which the blastomeres are totipotent. We genetically tagged these 2C-like ES cells and show that they lack the inner cell mass pluripotency proteins Oct4 (also known as Pou5f1), Sox2 and Nanog, and have acquired the ability to contribute to both embryonic and extraembryonic tissues. We show that nearly all ES cells cycle in and out of this privileged state, which is partially controlled by histone-modifying enzymes. Transcriptome sequencing and bioinformatic analyses showed that many 2C transcripts are initiated from long terminal repeats derived from endogenous retroviruses, suggesting this foreign sequence has helped to drive cell-fate regulation in placental mammals.


Cell Reports | 2015

Functional Gene Correction for Cystic Fibrosis in Lung Epithelial Cells Generated from Patient iPSCs.

Amy L. Firth; Tushar Menon; Gregory S. Parker; Susan J. Qualls; Benjamin M. Lewis; Eugene Ke; Carl T. Dargitz; Rebecca Wright; Ajai Khanna; Fred H. Gage; Inder M. Verma

Lung disease is a major cause of death in the United States, with current therapeutic approaches serving only to manage symptoms. The most common chronic and life-threatening genetic disease of the lung is cystic fibrosis (CF) caused by mutations in the cystic fibrosis transmembrane regulator (CFTR). We have generated induced pluripotent stem cells (iPSCs) from CF patients carrying a homozygous deletion of F508 in the CFTR gene, which results in defective processing of CFTR to the cell membrane. This mutation was precisely corrected using CRISPR to target corrective sequences to the endogenous CFTR genomic locus, in combination with a completely excisable selection system, which significantly improved the efficiency of this correction. The corrected iPSCs were subsequently differentiated to mature airway epithelial cells where recovery of normal CFTR expression and function was demonstrated. This isogenic iPSC-based model system for CF could be adapted for the development of new therapeutic approaches.


Circulation | 2008

Adenylyl Cyclase Type 6 Deletion Decreases Left Ventricular Function via Impaired Calcium Handling

Tong Tang; Mei Hua Gao; N. Chin Lai; Amy L. Firth; Toshiyuki Takahashi; Tracy Guo; Jason X.-J. Yuan; David Roth; H. Kirk Hammond

Background— Adenylyl cyclases (ACs) are a family of effector molecules for G-protein–coupled receptors. The 2 ACs most abundantly expressed in cardiac myocytes are types 5 (AC5) and 6 (AC6), which have 65% amino acid homology. It has been speculated that coexpression of 2 AC types in cardiac myocytes represents redundancy, but the specific role of AC6 in cardiac physiology and its differences from AC5 remain to be defined. Methods and Results— We generated transgenic mice with targeted deletion of AC6. Deletion of AC6 was associated with reduced left ventricular contractile function (P=0.026) and relaxation (P=0.041). The absence of AC6 was associated with a 48% decay in &bgr;-adrenergic receptor–stimulated cAMP production in cardiac myocytes (P=0.003) and reduced protein kinase A activity (P=0.015). In addition, phospholamban phosphorylation was reduced (P=0.015), sarcoplasmic reticulum Ca2+-ATPase activity was impaired (P<0.0001), and cardiac myocytes showed marked abnormalities in calcium transient formation (P=0.001). Conclusions— The combination of impaired cardiac cAMP generation and calcium handling that result from AC6 deletion underlies abnormalities in left ventricular function. The biochemical and physiological consequences of AC6 deletion reveal it to be an important effector molecule in the adult heart, serving unique biological functions not replicated by AC5.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Generation of multiciliated cells in functional airway epithelia from human induced pluripotent stem cells

Amy L. Firth; Carl T. Dargitz; Susan J. Qualls; Tushar Menon; Rebecca Wright; Oded Singer; Fred H. Gage; Ajai Khanna; Inder M. Verma

Significance Pulmonary disease is the third highest cause for morbidity and mortality worldwide. Studies of human lung disease in vivo or in vitro are currently limited. Using induced pluripotent stem cells, we developed a step-wise differentiation protocol ending in an air–liquid interface to generate a pseudostratified polarized layer of endodermal-derived epithelial cells (forkhead box protein A2+ and NK2 homeobox 1+). This layer includes Clara cells with Clara cell 10 kD-positive vesicles, mucin 5A/C-positive goblet cells, multiciliated cells, and isolated cells that have forskolin-induced chloride currents sensitive to cystic fibrosis transmembrane regulator inhibitor 172. The development of this model will enable the future study of many lung diseases (especially those where defective cilia are involved, such as primary ciliary dyskinesia) that have been difficult to study in human models from a developmental perspective. Despite therapeutic advancement, pulmonary disease still remains a major cause of morbidity and mortality around the world. Opportunities to study human lung disease either in vivo or in vitro are currently limited. Using induced pluripotent stem cells (iPSCs), we generated mature multiciliated cells in a functional airway epithelium. Robust multiciliogenesis occurred when notch signaling was inhibited and was confirmed by (i) the assembly of multiple pericentrin-stained centrioles at the apical surface, (ii) expression of transcription factor forkhead box protein J1, and (iii) presence of multiple acetylated tubulin-labeled cilia projections in individual cells. Clara, goblet, and basal cells were all present, confirming the generation of a complete polarized epithelial-cell layer. Additionally, cAMP-activated and cystic fibrosis transmembrane regulator inhibitor 172-sensitive cystic fibrosis transmembrane regulator currents were recorded in isolated epithelial cells. Our report demonstrating the generation of mature multiciliated cells in respiratory epithelium from iPSCs is a significant advance toward modeling a number of human respiratory diseases in vitro.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

Identification of putative endothelial progenitor cells (CD34+CD133+Flk-1+) in endarterectomized tissue of patients with chronic thromboembolic pulmonary hypertension

Weijuan Yao; Amy L. Firth; Richard S. Sacks; Aiko Ogawa; William R. Auger; Peter F. Fedullo; Michael M. Madani; Grace Y. Lin; Naohide Sakakibara; Patricia A. Thistlethwaite; Stuart W. Jamieson; Lewis J. Rubin; Jason X.-J. Yuan

Chronic thromboembolic pulmonary hypertension (CTEPH) is characterized by a fibrotic thrombus persisting and obliterating the lumen of pulmonary arteries; its pathogenesis remains poorly defined. This study investigates a potential contribution for progenitor cell types in the development of vascular obliteration and remodeling in CTEPH patients. Endarterectomized tissue from patients undergoing pulmonary thromboendarterectomy was collected and examined for the structure and cellular composition. Our data show an organized fibrin network structure in unresolved thromboemboli and intimal remodeling in vascular wall tissues, characterized by smooth muscle alpha-actin (SM-alphaA)-positive cell proliferation in proximal regions (adjacent to thromboemboli) and neoangiogenesis/recanalization in distal regions (downstream from thromboemboli). Cells that are positively stained with CD34 and fetal liver kinase-1 (Flk-1) (CD34(+)Flk-1(+)) were identified in both the proximal and distal vascular tissues; a subpopulation of CD34(+)Flk-1(+)CD133(+) cells were further identified by immunostaining. Triple-positive cells are indicative of a population of putative endothelial progenitor cells or potential colony-forming units of endothelial cells. In addition, inflammatory cells (CD45(+)) and collagen-secreting cells (procollagen-1(+)) were detected in the proximal vascular wall. Some of the CD34(+) cells in CTEPH cells isolated from proximal regions were also positive for SM-alphaA. Our data indicate that putative progenitor cell types are present in the neointima of occluded vessels of CTEPH patients. It is possible that the microenvironment provided by thromboemboli may promote these putative progenitor cells to differentiate and enhance intimal remodeling.


American Journal of Physiology-cell Physiology | 2012

PDGF enhances store-operated Ca2+ entry by upregulating STIM1/Orai1 via activation of Akt/mTOR in human pulmonary arterial smooth muscle cells

Aiko Ogawa; Amy L. Firth; Kimberly A. Smith; Mary V. Maliakal; Jason X.-J. Yuan

Platelet-derived growth factor (PDGF) and its receptor are known to be substantially elevated in lung tissues and pulmonary arterial smooth muscle cells (PASMC) isolated from patients and animals with pulmonary arterial hypertension. PDGF has been shown to phosphorylate and activate Akt and mammalian target of rapamycin (mTOR) in PASMC. In this study, we investigated the role of PDGF-mediated activation of Akt signaling in the regulation of cytosolic Ca(2+) concentration and cell proliferation. PDGF activated the Akt/mTOR pathway and, subsequently, enhanced store-operated Ca(2+) entry (SOCE) and cell proliferation in human PASMC. Inhibition of Akt attenuated the increase in cytosolic Ca(2+) concentration due to both SOCE and PASMC proliferation. This effect correlated with a significant downregulation of stromal interacting molecule (STIM) and Orai, proposed molecular correlates for SOCE in many cell types. The data from this study present a novel pathway for the regulation of Ca(2+) signaling and PASMC proliferation involving activation of Akt in response to upregulated expression of PDGF. Targeting this pathway may lead to the development of a novel therapeutic option for the treatment of pulmonary arterial hypertension.


Stem Cells | 2011

Brief Report: Efficient Generation of Hematopoietic Precursors and Progenitors from Human Pluripotent Stem Cell Lines

Niels-Bjarne Woods; Aaron S. Parker; Roksana Moraghebi; Margaret Lutz; Amy L. Firth; Kristen J. Brennand; W. Travis Berggren; Angel Raya; Juan Carlos Izpisua Belmonte; Fred H. Gage; Inder M. Verma

By mimicking embryonic development of the hematopoietic system, we have developed an optimized in vitro differentiation protocol for the generation of precursors of hematopoietic lineages and primitive hematopoietic cells from human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSCs). Factors such as cytokines, extra cellular matrix components, and small molecules as well as the temporal association and concentration of these factors were tested on seven different human ESC and iPSC lines. We report the differentiation of up to 84% human CD45+ cells (average 41% ± 16%, from seven pluripotent lines) from the differentiation culture, including significant numbers of primitive CD45+/CD34+ and CD45+/CD34+/CD38− hematopoietic progenitors. Moreover, the numbers of hematopoietic progenitor cells generated, as measured by colony forming unit assays, were comparable to numbers obtained from fresh umbilical cord blood mononuclear cell isolates on a per CD45+ cell basis. Our approach demonstrates highly efficient generation of multipotent hematopoietic progenitors with among the highest efficiencies reported to date (CD45+/CD34+) using a single standardized differentiation protocol on several human ESC and iPSC lines. Our data add to the cumulating evidence for the existence of an in vitro derived precursor to the hematopoietic stem cell (HSC) with limited engrafting ability in transplanted mice but with multipotent hematopoietic potential. Because this protocol efficiently expands the preblood precursors and hematopoietic progenitors, it is ideal for testing novel factors for the generation and expansion of definitive HSCs with long‐term repopulating ability. STEM CELLS 2011;29:1158–1164


Progress in Biophysics & Molecular Biology | 2010

Pathophysiology of voltage-gated K+ channels in vascular smooth muscle cells: modulation by protein kinases.

Eun A. Ko; Won Sun Park; Amy L. Firth; Nari Kim; Jason X.-J. Yuan; Jin Han

In this review, the pathological alteration and clinical relevance of voltage-gated K(+) (Kv) channels and their specific regulation by protein kinase-dependent signaling in vascular smooth muscle cells are described, particularly focusing on the pulmonary vasculature. The physiological relevance, channel characteristics, pharmacological modulation, and expression of Kv channels vary between different arterial beds and between subdivisions of arteries within those vascular beds. Although detailed signaling cascades regulating Kv channels are not clearly elucidated, it is known that the Kv channels in vascular smooth muscle cells can be tightly regulated by protein kinases C (PKC) and A (PKA). Alterations in Kv channel expression and function has been noted in pathological and pathophysiological conditions including hypertension (pulmonary and systemic), in diabetes and in individuals subjected to prolonged hypoxia (high altitude living). Vascular Kv channels are potential therapeutic targets in diseases such as pulmonary arterial hypertension and, therefore, it is important to understand the specific pharmacological modulation of Kv channel isoforms in different vascular beds.


American Journal of Physiology-cell Physiology | 2010

Multipotent mesenchymal progenitor cells are present in endarterectomized tissues from patients with chronic thromboembolic pulmonary hypertension

Amy L. Firth; Weijuan Yao; Aiko Ogawa; Michael M. Madani; Grace Y. Lin; Jason X.-J. Yuan

Factors contributing to the development of a fibrotic vascular scar and pulmonary vascular remodeling leading to chronic thromboembolic pulmonary hypertension (CTEPH) are still unknown. This study investigates the potential contribution of multipotent progenitor cells and myofibroblasts to the development and progression of CTEPH. Histological examination of endarterectomized tissues from patients with CTEPH identified significant neointimal formation. Morphological heterogeneity was observed in cells isolated from these tissues, including a network-like growth pattern and the formation of colony-forming unit-fibroblast-like colonies (CFU-F). Cells typically coexpressed intermediate filaments vimentin and smooth muscle alpha-actin. Cells were characterized by immunofluorescence and quantitated by fluorescent-activated cell sorting (FACS) for the presence of cell surface markers typical of mesenchymal progenitor cells; cells were >99% CD44(+) CD73(+), CD90(+), CD166(+); >80% CD29(+); 45-99% CD105(+); CD34(-) and CD45(-). Cells were capable of adipogenic and osteogenic differentiation, determined by Oil Red O and Alizarin Red staining, respectively. Additionally, a population of Stro-1(+) cells, a marker of bone marrow-derived stromal cells (4.2%), was sorted by FACS and also capable of adipogenic and osteogenic differentiation. In conclusion, this study is the first to identify a myofibroblast cell phenotype to be predominant within endarterectomized tissues, contributing extensively to the vascular lesion/clot. This cell may arise from transdifferentiation of adventitial fibroblasts or differentiation of mesenchymal progenitor cells. The unique microenvironment created by the stabilized clot is likely a factor in stimulating such cellular changes. These findings will be critical in establishing future studies in the development of novel and much needed therapeutic approaches for pulmonary hypertension.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2009

Inhibition of mTOR attenuates store-operated Ca2+ entry in cells from endarterectomized tissues of patients with chronic thromboembolic pulmonary hypertension

Aiko Ogawa; Amy L. Firth; Weijuan Yao; Michael M. Madani; Kim M. Kerr; William R. Auger; Stuart W. Jamieson; Patricia A. Thistlethwaite; Jason X.-J. Yuan

Pulmonary vascular remodeling occurs in patients with chronic thromboembolic pulmonary hypertension (CTEPH). One factor contributing to this vascular wall thickening is the proliferation of pulmonary artery smooth muscle cells (PASMC). Store-operated Ca(2+) entry (SOCE) and cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) in PASMC are known to be important in cell proliferation and vascular remodeling in pulmonary hypertension. Rapamycin is widely known for its antiproliferative effects in injured coronary arteries. Although several reports have suggested favorable effects of rapamycin in animal models of pulmonary hypertension, no reports have been published to date in human tissues. Here we report that rapamycin has an inhibitory effect on SOCE and an antiproliferative effect on PASMC derived from endarterectomized tissues of CTEPH patients. Cells were isolated from endarterectomized tissues obtained from patients undergoing pulmonary thromboendarterectomy (PTE). Immunohistochemical analysis indicated high deposition of platelet-derived growth factor (PDGF) in tissue sections from PTE tissues and increased PDGF receptor expression. PDGF transiently phosphorylated Akt, mammalian target of rapamycin (mTOR), and p70S6 kinase in CTEPH cells from CTEPH patients. Acute treatment (30 min) with rapamycin (10 nM) slightly increased cyclopiazonic acid (10 microM)-induced Ca(2+) mobilization and significantly reduced SOCE. Chronic treatment (24 h) with rapamycin reduced Ca(2+) mobilization and markedly inhibited SOCE. The inhibitory effects of rapamycin on SOCE were less prominent in control cells. Rapamycin also significantly reduced PDGF-stimulated cell proliferation. In conclusion, the data from this study indicate the importance of the mTOR pathway in the development of pulmonary vascular remodeling in CTEPH and suggest a potential therapeutic benefit of rapamycin (or inhibition of mTOR) in these patients.

Collaboration


Dive into the Amy L. Firth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Won Sun Park

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongliang Li

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Sung Eun Shin

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Eun-Taek Han

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Kwon-Soo Ha

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Seok-Ho Hong

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Won-Kyo Jung

Pukyong National University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge