Amy M. Becker
University of Texas Southwestern Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amy M. Becker.
PLOS ONE | 2013
Amy M. Becker; Kathryn H. Dao; Bobby Kwanghoon Han; Roger Kornu; Shuchi Lakhanpal; Angela B. Mobley; Quan Zhen Li; Yun Lian; Andreas Reimold; Nancy J. Olsen; David R. Karp; Fatema Z. Chowdhury; J. David Farrar; Anne B. Satterthwaite; Chandra Mohan; Peter E. Lipsky; Edward K. Wakeland; Laurie S. Davis
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that is characterized by defective immune tolerance combined with immune cell hyperactivity resulting in the production of pathogenic autoantibodies. Previous gene expression studies employing whole blood or peripheral blood mononuclear cells (PBMC) have demonstrated that a majority of patients with active disease have increased expression of type I interferon (IFN) inducible transcripts known as the IFN signature. The goal of the current study was to assess the gene expression profiles of isolated leukocyte subsets obtained from SLE patients. Subsets including CD19+ B lymphocytes, CD3+CD4+ T lymphocytes and CD33+ myeloid cells were simultaneously sorted from PBMC. The SLE transcriptomes were assessed for differentially expressed genes as compared to healthy controls. SLE CD33+ myeloid cells exhibited the greatest number of differentially expressed genes at 208 transcripts, SLE B cells expressed 174 transcripts and SLE CD3+CD4+ T cells expressed 92 transcripts. Only 4.4% (21) of the 474 total transcripts, many associated with the IFN signature, were shared by all three subsets. Transcriptional profiles translated into increased protein expression for CD38, CD63, CD107a and CD169. Moreover, these studies demonstrated that both SLE lymphoid and myeloid subsets expressed elevated transcripts for cytosolic RNA and DNA sensors and downstream effectors mediating IFN and cytokine production. Prolonged upregulation of nucleic acid sensing pathways could modulate immune effector functions and initiate or contribute to the systemic inflammation observed in SLE.
Journal of Immunology | 2009
Laura M. DeFord-Watts; Tara C. Tassin; Amy M. Becker; Jennifer J. Medeiros; Joseph P. Albanesi; Paul E. Love; Christoph Wülfing; Nicolai S. C. van Oers
The CD3 ε subunit of the TCR complex contains two defined signaling domains, a proline-rich sequence and an ITAM. We identified a third signaling sequence in CD3 ε, termed the basic-rich stretch (BRS). Herein, we show that the positively charged residues of the BRS enable this region of CD3 ε to complex a subset of acidic phospholipids, including PI(3)P, PI(4)P, PI(5)P, PI(3,4,5)P3, and PI(4,5)P2. Transgenic mice containing mutations of the BRS exhibited varying developmental defects, ranging from reduced thymic cellularity to a complete block in T cell development. Peripheral T cells from BRS-modified mice also exhibited several defects, including decreased TCR surface expression, reduced TCR-mediated signaling responses to agonist peptide-loaded APCs, and delayed CD3 ε localization to the immunological synapse. Overall, these findings demonstrate a functional role for the CD3 ε lipid-binding domain in T cell biology.
Pediatric Nephrology | 2011
Amy M. Becker
This review explores the current model of sickle cell nephropathy and the limitations of the model. Renal abnormalities are common complications of sickle cell disease (SCD). Beginning in childhood, patients with SCD develop a urinary concentrating defect resulting in polyuria and a predisposition to nocturnal enuresis and dehydration. The current model of sickle cell nephropathy suggests that destruction of the renal medulla induces production of renal vasodilating substances that feedback to the glomerulus causing hyperfiltration. Hyperfiltration leads to glomerulosclerosis and proteinuria, with eventual reduction in kidney function. The crucial steps of vasodilating substance production and hyperfiltration in children with SCD have not been proven. Treatment of sickle cell nephropathy is aimed at the reduction of proteinuria with angiotensin converting enzyme inhibitors or angiotensin receptor blockers. Hydroxyurea and chronic transfusion therapy may also alter the progression of sickle cell nephropathy in children. Further studies are needed to identify an accurate model and effective treatments for sickle cell nephropathy.
PLOS ONE | 2011
Serkan Belkaya; Robert L. Silge; Ashley R. Hoover; Jennifer J. Medeiros; Jennifer L. Eitson; Amy M. Becker; M. Teresa de la Morena; Rhonda Bassel-Duby; Nicolai S. C. van Oers
Background Physiological stress evokes rapid changes in both the innate and adaptive immune response. Immature αβ T cells developing in the thymus are particularly sensitive to stress, with infections and/or exposure to lipopolysaccharide or glucocorticoids eliciting a rapid apoptotic program. MicroRNAs are a class of small, non-coding RNAs that regulate global gene expression by targeting diverse mRNAs for degradation. We hypothesized that a subset of thymically encoded microRNAs would be stress responsive and modulate thymopoiesis. We performed microRNA profiling of thymic microRNAs isolated from control or stressed thymic tissue obtained from mice. We identified 18 microRNAs that are dysregulated >1.5-fold in response to lipopolysaccharide or the synthetic corticosteroid dexamethasone. These included the miR-17-90 cluster, which have anti-apoptotic functions, and the miR-181 family, which contribute to T cell tolerance. The stress-induced changes in the thymic microRNAs are dynamically and distinctly regulated in the CD4−CD8−, CD4+CD8+, CD4+CD8−, and CD4−CD8+ thymocyte subsets. Several of the differentially regulated murine thymic miRs are also stress responsive in the heart, kidney, liver, brain, and/or spleen. The most dramatic thymic microRNA down modulated is miR-181d, exhibiting a 15-fold reduction following stress. This miR has both similar and distinct gene targets as miR-181a, another member of miR-181 family. Many of the differentially regulated microRNAs have known functions in thymopoiesis, indicating that their dysregulation will alter T cell repertoire selection and the formation of naïve T cells. This data has implications for clinical treatments involving anti-inflammatory steroids, ablation therapies, and provides mechanistic insights into the consequences of infections.
Molecular Immunology | 2008
Jennifer A. Young; Amy M. Becker; Jennifer J. Medeiros; Virginia Smith Shapiro; Andrew Wang; J. David Farrar; Timothy A. Quill; Rob Hooft van Huijsduijnen; Nicolai S. C. van Oers
T cell receptor signaling processes are controlled by the integrated actions of families of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPases). Several distinct cytosolic protein tyrosine phosphatases have been described that are able to negatively regulate TCR signaling pathways, including SHP-1, SHP-2, PTPH1, and PEP. Using PTPase substrate-trapping mutants and wild type enzymes, we determined that PTPN4/PTP-MEG1, a PTPH1-family member, could complex and dephosphorylate the ITAMs of the TCR zeta subunit. In addition, the substrate-trapping derivative augmented basal and TCR-induced activation of NF-kappaB in T cells. To characterize the contribution of this PTPase in T cells, we developed PTPN4-deficient mice. T cell development and TCR signaling events were comparable between wild type and PTPN4-deficient animals. The magnitude and duration of TCR-regulated ITAM phosphorylation, as well as overall protein phosphorylation, was unaltered in the absence of PTPN4. Finally, Th1- and Th2-derived cytokines and in vivo immune responses to Listeria monocytogenes were equivalent between wild type and PTPN4-deficient mice. These findings suggest that additional PTPases are involved in controlling ITAM phosphorylations.
Clinical Pediatrics | 2007
Jyothsna Gattineni; Susan Weiser; Amy M. Becker; Michel Baum
The incidence of mercury intoxication has decreased considerably because of stricter public health regulations. However, it has not been completely eliminated and should be considered in a child with unexplained tachycardia, hypertension, mood changes, weight loss, and acrodynia. Mercury intoxication can be difficult to differentiate from pheochromocytoma and Kawasakis disease. Here, the authors report the case of an 8-year-old boy with history of mercury exposure, signs and symptoms suggestive of mercury intoxication, and good response to chelation therapy, but with only mild increase in urinary mercury levels. This case highlights the fact that urinary mercury levels do not necessarily correlate with the severity of clinical signs and symptoms of mercury intoxication.
Pediatric Blood & Cancer | 2014
Amy M. Becker; Jordan H. Goldberg; Michael Henson; Chul Ahn; Liyue Tong; Michel Baum; George R. Buchanan
Kidney disease is an important cause of morbidity and mortality in patients with sickle cell anemia (SCA). The factors that affect progression of renal disease are unknown, especially in children and adolescents. Alterations in blood pressure, including hypertension and lack of the normal nocturnal dip in blood pressure, are important determinants of diabetic nephropathy and other renal diseases and may play a role in sickle cell nephropathy. Our primary hypothesis was that children with SCA who have microalbuminuria will demonstrate less nocturnal dipping of blood pressure compared to patients without microalbuminuria. We also investigated other potential factors associated with microalbuminuria.
Journal of Immunology | 2010
Amy M. Becker; Jon S. Blevins; Farol L. Tomson; Jennifer L. Eitson; Jennifer J. Medeiros; Felix Yarovinsky; Michael V. Norgard; Nicolai S. C. van Oers
Invariant NKT (iNKT) cells regulate early immune responses to infections, in part because of their rapid release of IFN-γ and IL-4. iNKT cells are proposed to reduce the severity of Lyme disease following Borrelia burgdorferi infection. Unlike conventional T cells, iNKT cells express an invariant αβ TCR that recognizes lipids bound to the MHC class I-like molecule, CD1d. Furthermore, these cells are positively selected following TCR interactions with glycolipid/CD1d complexes expressed on CD4+CD8+ thymocytes. Whereas conventional T cell development can proceed with as few as 4/10 CD3 immunoreceptor tyrosine-based activation motifs (ITAMs), little is known about the ITAM requirements for iNKT cell selection and expansion. We analyzed iNKT cell development in CD3 ζ transgenic lines with various tyrosine-to-phenylalanine substitutions (YF) that eliminated the functions of the first (YF1,2), third (YF5,6), or all three (YF1–6) CD3 ζ ITAMs. iNKT cell numbers were significantly reduced in the thymus, spleen, and liver of all YF mice compared with wild type mice. The reduced numbers of iNKT cells resulted from significant reductions in the expression of the early growth response 2 and promyelocytic leukemia zinc finger transcription factors. In the mice with few to no iNKT cells, there was no difference in the severity of Lyme arthritis compared with wild type controls, following infections with the spirochete B. burgdorferi. These findings indicate that a full complement of functional CD3 ζ ITAMs is required for effective iNKT cell development.
Journal of Immunology | 2007
Amy M. Becker; Laura M. DeFord-Watts; Christoph Wuelfing; Nicolai S. C. van Oers
The TCR complex, when isolated from thymocytes and peripheral T cells, contains a constitutively tyrosine-phosphorylated CD3ζ molecule termed p21. Previous investigations have shown that the constitutive phosphorylation of CD3ζ results from TCR interactions with MHC molecules occurring in both the thymus and the periphery. To determine what contribution the selection environment had on this constitutive phosphorylation, we analyzed CD3ζ from several distinct class I- and II-restricted TCR-transgenic mice where thymocyte development occurred in either a selecting or a nonselecting MHC environment. Herein, we report that constitutively phosphorylated CD3ζ (p21) was present in thymocytes that developed under nonselecting peptide-MHC conditions. These findings strongly support the model that the TCR has an inherent avidity for MHC molecules before repertoire selection. Biochemical analyses of the TCR complex before and after TCR stimulation suggested that the constitutively phosphorylated CD3ζ subunit did not contribute to de novo TCR signals. These findings may have important implications for T cell functions during self-MHC recognition under normal and autoimmune circumstances.
Pediatric Blood & Cancer | 2007
Amy M. Becker; Daniel C. Bowers; Linda R. Margraf; Jacqueline Emmons; Michel Baum
Primary renal lymphoma (PRL) is a rare lymphoma which usually presents with hematuria, flank pain, abdominal mass, and weight loss. PRL is more diagnosed in adults than children. We describe an asymptomatic child who presented with hypertension and was subsequently diagnosed with primary renal lymphoma. This case represents an atypical presentation for PRL. Pediatr Blood Cancer 2007;48:711–713.