Amy M. Treonis
University of Richmond
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amy M. Treonis.
Ecosystems | 1999
Amy M. Treonis; Diana H. Wall; Ross A. Virginia
ABSTRACT We studied invertebrate communities across a transition zone between soils and stream sediments in the cold desert landscape of Taylor Valley, Antarctica. We hypothesized that hydrological and biogeochemical linkages in the functionally important transition zone between streams and surrounding soils should be important in structuring invertebrate communities. We compared invertebrate communities along transects beginning in the saturated sediments under flowing stream water and extending laterally through the hyporheic zone to the dry soils that characterize most of the dry valley landscape. Nematodes, rotifers, and tardigrades assembled into different communities in soils and sediments, but there was no relationship between the total abundance of invertebrates and moisture. Community diversity was, however, influenced by the moisture and salinity gradients created with distance from flowing waters. The wet, low-salinity sediments in the center of the stream contained the most invertebrates and had the highest taxonomic diversity. Adjacent to the stream, communities in the hyporheic zone were influenced strongly by salt deposition. Abundance of invertebrates was low in the hyporheic zone, but this area contained the most co-occurring nematode species (three species). In dry soils, communities were composed almost entirely of a single species of nematode, Scottnema lindsayae, an organism not found in the stream center. These results suggest spatially-partitioned niches for invertebrates in soils and sediments in the dry valley landscape based on proximity to sources of moisture and the interactive effects of salinity.
Oecologia | 1998
John Lussenhop; Amy M. Treonis; Peter S. Curtis; James A. Teeri; Christoph S. Vogel
Abstract We tested the hypotheses that increased belowground allocation of carbon by hybrid poplar saplings grown under elevated atmospheric CO2 would increase mass or turnover of soil biota in bulk but not in rhizosphere soil. Hybrid poplar saplings (Populus×euramericana cv. Eugenei) were grown for 5 months in open-bottom root boxes at the University of Michigan Biological Station in northern, lower Michigan. The experimental design was a randomized-block design with factorial combinations of high or low soil N and ambient (34 Pa) or elevated (69 Pa) CO2 in five blocks. Rhizosphere microbial biomass carbon was 1.7 times greater in high-than in low-N soil, and did not respond to elevated CO2. The density of protozoa did not respond to soil N but increased marginally (P < 0.06) under elevated CO2. Only in high-N soil did arbuscular mycorrhizal fungi and microarthropods respond to CO2. In high-N soil, arbuscular mycorrhizal root mass was twice as great, and extramatrical hyphae were 11% longer in elevated than in ambient CO2 treatments. Microarthropod density and activity were determined in situ using minirhizotrons. Microarthropod density did not change in response to elevated CO2, but in high-N soil, microarthropods were more strongly associated with fine roots under elevated than ambient treatments. Overall, in contrast to the hypotheses, the strongest response to elevated atmospheric CO2 was in the rhizosphere where (1) unchanged microbial biomass and greater numbers of protozoa (P < 0.06) suggested faster bacterial turnover, (2) arbuscular mycorrhizal root length increased, and (3) the number of microarthropods observed on fine roots rose.
Integrative and Comparative Biology | 2005
Amy M. Treonis; Diana H. Wall
Abstract Soil nematodes are capable of employing an anhydrobiotic survival strategy in response to adverse environmental conditions. The McMurdo Dry Valleys of Antarctica represent a unique environment for the study of anhydrobiosis because extremes of cold, salinity, and aridity combine to limit biological water availability. We studied nematode anhydrobiosis in Taylor Valley, Antarctica, using natural variation in soil properties. The coiled morphology of nematodes extracted from dry valley soils suggests that they employ anhydrobiosis, and these coiled nematodes showed enhanced revival when re-hydrated in water as compared to vermiform nematodes. Nematode coiling was correlated with soil moisture content, salinity, and water potential. In the driest soils studied (gravimetric water content <2%), 20–80% of nematodes were coiled. Soil water potential measurements also showed a high degree of variability. These measurements reflect microsite variation in soil properties that occurs at the scale of the nematode. We studied nematode anhydrobiosis during the austral summer, and found that the proportion of nematodes coiled can vary diurnally, with more nematodes vermiform and presumably active at the warmest time of day. However, dry valley nematodes uncoiled rapidly in response to soil wetting from snowmelt, and most nematode activity in the Dry Valleys may be confined to periods following rare snowfall and melting events. Anhydrobiosis represents an important temporal component of a dry valley nematodes life span. The ability to utilize anhydrobiosis plays a significant role in the widespread distribution and success of these organisms in the Antarctic Dry Valleys and beyond.
Plant and Soil | 2005
Megan M. Van Hecke; Amy M. Treonis; Jessica R. Kaufman
The goal of our study was to investigate the impact of fungal endophytes in tall fescue (Festuca arundinacea) on rhizodeposition and in turn, the soil microbial community. Sand-based, aseptic microlysimeter units were constructed for the collection of rhizodeposit solutions for chemical analyses from the roots of endophyte-free (E−) and endophyte-infected (E+) tall fescue plants. E+ plants were infected with Neotyphodium coenophialum, the most common endophyte found in tall fescue. Rhizodeposit solutions collected over nine weeks from E+ grass contained more organic carbon and carbohydrates than E−. These solutions were allowed to percolate through columns of plant-free soils to assess the response of the soil microbial communities. Soils to which solutions from E+ grass were applied had significantly higher respiration rates than those receiving solutions from E− grass, suggesting that microbial activity was stimulated by changes in the rhizodeposits. Culture-based assays of the soil microbial community (plate counts and community-level physiological profiling) suggest that the basic structure of the microbial community was not affected by application of rhizodeposit solutions from E+ plants as compared to E−. Our results indicate that the presence of a fungal endophyte may enhance rhizodeposition by tall fescue and could consequently influence microbial mineralization processes in the soil. In grasslands where nutrients may be limiting, hosting a fungal endophyte has the potential to enhance plant nutrient supply indirectly via a stimulatory effect on the soil microbial biomass.
Ecosystems | 2002
Amy M. Treonis; Diana H. Wall; Ross A. Virginia
In the extreme cold desert soil of the McMurdo Dry Valleys of Antarctica, we studied the effects of changing moisture and temperature on rates of decomposition and the activity and abundance of soil organisms. Our objective was to understand how moisture and temperature structure invertebrate communities and control important ecosystem processes and soil biotic activity in this extreme environment. First, in a field experiment, we manipulated soil moisture and temperature and compared cotton strip decomposition rates at two dry valley sites with different moisture regimes. At both sites, live nematode abundance and activity were unchanged by soil treatments over the 2-year study. In the same plots, the cotton strips did not decompose, despite soil warming and the addition of moisture. The results suggest that biological activity in the McMurdo Dry Valleys is severely limited and that soil organisms are not responsive to improving environmental conditions. Second, in microcosms, we manipulated dry valley soil moisture at a constant temperature of 10°C and measured the rates of key soil processes. Soil respiration, nitrification, and the decomposition of cotton strips were all greater in dry valley soils that were wetted to 10% moisture content, as compared to soils at 0.6%. These results indicate that the decomposition potential for dry valley soils is high when moisture and temperature limitations are removed. In the field, however, this process was extremely slow, and biota did not respond to improving environmental conditions. Soil processes appear to be limited primarily by the extreme desiccation of the dry valleys. Ecosystems processes are likely restricted to the brief periods following infrequent snowfall, melt, and soil wetting that permit the activity of soil microbes and biota.
European Journal of Soil Biology | 2001
Susan J. Grayston; Lorna A. Dawson; Amy M. Treonis; Philip J. Murray; J. M. Ross; Eileen Reid; Ruth MacDougall
Bentgrass (Agrostis capillaris) and clover (Trifolium repens) were grown as pure swards and mixtures in pots containing soil from the NERC Soil Biodiversity field site located in Scotland. Six weeks after plant establishment leatherjacket larvae (Tipula paludosa) were added at field density to half the pots and the impacts of their feeding on plant shoot and root biomass and soil microbial communities was determined after 10 days. Plate counts and community level physiological profiles (CLPP) were used to characterise the microbial communities. Larval herbivory had a significant negative effect on shoot growth of both grass and clover and root biomass of grass. In mixed swards, larvae preferentially fed on clover. Soil microbial community structure was altered in the presence of larvae with populations of pseudomonads being significantly increased. These community differences may be attributed to increased quantity and qualitative changes in carbon flux to the soil as a result of root herbivory, as indicated by differences in the CLPPs of microbial communities in the presence and absence of larvae. This was mainly due to increased utilisation of some sugars, carboxylic and amino acids in the presence of larvae.
Biology and Fertility of Soils | 1997
Amy M. Treonis; J. F. Lussenhop
Abstract Short-term changes in bacterial and protozoan populations from the soil of plants grown under elevated atmospheric CO2 were quantified. We grew Brassica nigra at either ambient or twice-ambient CO2 levels within open-top chambers in the field for 4 weeks. Plant biomass, above- and belowground, was unaffected by elevated CO2. Direct count bacterial density was unchanged under elevated CO2. Flagellate density tended to increase, whereas amoebal density significantly declined under elevated CO2. This change in protozoan community structure suggests trophic transfer of the elevated CO2 fertilization effect through the soil food chain.
Plant and Soil | 2003
Lorna A. Dawson; Susan J. Grayston; Philip J. Murray; Roger Cook; Alan C. Gange; J. M. Ross; S. M. Pratt; E. I. Duff; Amy M. Treonis
At an upland field site in Scotland on an established Festuca-Agrostis pasture, the effects of soil amendment on root dynamics, using nitrogen and lime and the regular application of insecticide, were studied over a period of 1 year. The most common insect root herbivore at the site was Tipula paludosa, and the application of insecticide (chlorpyrifos) reduced numbers of all insect larvae of all species. Root biomass, root appearance, root disappearance and root density were all reduced by insecticide. This reduced rooting could reflect reduced root replacement, due to the reduction in root herbivory in insecticide-treated plots or could be a direct affect of insecticide application on the roots. Root appearance, root disappearance and C and N input to the soil were increased by treatment with nitrogen and lime, while root survival time was reduced. The nitrogen and lime treatment also increased bacterial numbers in the soil and enhanced their potential C utilization. An altered rooting density and longevity was brought about by the two soil treatments, which could have both direct and indirect effects on the soil biota.
Antarctic Science | 2007
H.W. Hunt; Amy M. Treonis; Diana H. Wall; Ross A. Virginia
Abstract Equations were developed to predict soil matric potential as a function of soil water content, texture and bulk density in sandy soils. The equations were based on the additivity hypothesis - that water-retention of a whole soil depends on the proportions of several particle size fractions, each with fixed water-retention characteristics. The new model is an advancement over previously published models in that it embodies three basic properties of water-retention curves: a) matric potential is zero at saturation water content, b) matric potential approaches -∞ as water content approaches zero, and c) volumetric water content in dry soil is proportional to bulk density. Values of model parameters were taken from the literature, or estimated by fitting model predictions to data for sandy soils with low organic matter content. Most of the variation in water-release curves in the calibration data was explained by texture, with negligible effects of bulk density and sand particle size. The model predicted that variation in clay content among soils within the sand and loamy sand textural classes had substantial effects on water-retention curves. An understanding of how variation in texture among sandy soils contributes to matric potential is necessary for interpreting biological activity in arid environments.
Scientific Reports | 2018
Amy M. Treonis; Samantha K. Unangst; Ryan M. Kepler; Jeffrey S. Buyer; Michel A. Cavigelli; Steven B. Mirsky; Jude E. Maul
We used complementary morphological and DNA metabarcoding approaches to characterize soil nematode communities in three cropping systems, conventional till (CT), no-till (NT) and organic (ORG), from a long-term field experiment. We hypothesized that organic inputs to the ORG system would promote a more abundant nematode community, and that the NT system would show a more structured trophic system (higher Bongers MI) than CT due to decreased soil disturbance. The abundance of Tylenchidae and Cephalobidae both showed positive correlations to soil organic carbon and nitrogen, which were highest in the ORG system. The density of omnivore-predator and bacterial-feeding nematodes was reduced in NT soils compared to CT, while some plant-parasitic taxa increased. NT soils had similar Bongers MI values to CT, suggesting they contained nematode communities associated with soils experiencing comparable levels of disturbance. Metabarcoding revealed within-family differences in nematode diversity. Shannon and Simpson’s index values for the Tylenchidae and Rhabditidae were higher in the ORG system than CT. Compared to morphological analysis, metabarcoding over- or underestimated the prevalence of several nematode families and detected some families not observed based on morphology. Discrepancies between the techniques require further investigation to establish the accuracy of metabarcoding for characterization of soil nematode communities.