Amy Moquin
Trudeau Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amy Moquin.
Journal of Immunology | 2008
Damian M. Carragher; Denise A. Kaminski; Amy Moquin; Louise Hartson; Troy D. Randall
Current influenza vaccines elicit Abs to the hemagglutinin and neuraminidase envelope proteins. Due to antigenic drift, these vaccines must be reformulated annually to include the envelope proteins predicted to dominate in the following season. By contrast, vaccination with the conserved nucleoprotein (NP) elicits immunity against multiple serotypes (heterosubtypic immunity). NP vaccination is generally thought to convey protection primarily via CD8 effector mechanisms. However, significant titers of anti-NP Abs are also induced, yet the involvement of Abs in protection has largely been disregarded. To investigate how Ab responses might contribute to heterosubtypic immunity, we vaccinated C57BL/6 mice with soluble rNP. This approach induced high titers of NP-specific serum Ab, but only poorly detectable NP-specific T cell responses. Nevertheless, rNP immunization significantly reduced morbidity and viral titers after influenza challenge. Importantly, Ab-deficient mice were not protected by this vaccination strategy. Furthermore, rNP-immune serum could transfer protection to naive hosts in an Ab-dependent manner. Therefore, Ab to conserved, internal viral proteins, such as NP, provides an unexpected, yet important mechanism of protection against influenza. These results suggest that vaccines designed to elicit optimal heterosubtypic immunity to influenza should promote both Ab and T cell responses to conserved internal proteins.
Immunity | 2009
Javier Rangel-Moreno; Juan Moyron-Quiroz; Damian M. Carragher; Kim Kusser; Louise Hartson; Amy Moquin; Troy D. Randall
The omentum is a site of B1 cell lymphopoiesis and immune responsiveness to T cell-independent antigens. However, it is unknown whether it supports immune responses independently of conventional lymphoid organs. We showed that the omentum collected antigens and cells from the peritoneal cavity and supported T cell-dependent B cell responses, including isotype switching, somatic hypermutation, and limited affinity maturation, despite the lack of identifiable follicular dendritic cells. The omentum also supported CD4+ and CD8+ T cell responses to peritoneal antigens and recruited effector T cells primed in other locations. Unlike conventional lymphoid organs, milky spots in the omentum developed in the absence of lymphoid tissue-inducer cells, but required the chemokine CXCL13. Although the lymphoid architecture of milky spots was disrupted in lymphotoxin-deficient mice, normal architecture was restored by reconstitution with lymphotoxin-sufficient hematopoietic cells. These results indicate that the milky spots of the omentum function as unique secondary lymphoid organs that promote immunity to peritoneal antigens.
Journal of Immunology | 2011
Mark W. LaMere; Ho-Tak Lam; Amy Moquin; Laura Haynes; Frances E. Lund; Troy D. Randall; Denise A. Kaminski
Influenza A virus causes recurring seasonal epidemics and occasional influenza pandemics. Because of changes in envelope glycoprotein Ags, neutralizing Abs induced by inactivated vaccines provide limited cross-protection against new viral serotypes. However, prior influenza infection induces heterosubtypic immunity that accelerates viral clearance of a second strain, even if the external proteins are distinct. In mice, cross-protection can also be elicited by systemic immunization with the highly conserved internal nucleoprotein (NP). Both T lymphocytes and Ab contribute to such cross-protection. In this paper, we demonstrate that anti-NP IgG specifically promoted influenza virus clearance in mice by using a mechanism involving both FcRs and CD8+ cells. Furthermore, anti-NP IgG rescued poor heterosubtypic immunity in B cell-deficient mice, correlating with enhanced NP-specific CD8 T cell responses. Thus, Ab against this conserved Ag has potent antiviral activity both in naive and in influenza-immune subjects. Such antiviral activity was not seen when mice were vaccinated with another internal influenza protein, nonstructural 1. The high conservation of NP Ag and the known longevity of Ab responses suggest that anti-NP IgG may provide a critically needed component of a universal influenza vaccine.
Journal of Virology | 2011
Mark W. LaMere; Amy Moquin; F. Eun-Hyung Lee; Ravi S. Misra; Patrick J. Blair; Laura Haynes; Troy D. Randall; Frances E. Lund; Denise A. Kaminski
ABSTRACT Seasonal influenza epidemics recur due to antigenic drift of envelope glycoprotein antigens and immune evasion of circulating viruses. Additionally, antigenic shift can lead to influenza pandemics. Thus, a universal vaccine that protects against multiple influenza virus strains could alleviate the continuing impact of this virus on human health. In mice, accelerated clearance of a new viral strain (cross-protection) can be elicited by prior infection (heterosubtypic immunity) or by immunization with the highly conserved internal nucleoprotein (NP). Both heterosubtypic immunity and NP-immune protection require antibody production. Here, we show that systemic immunization with NP readily accelerated clearance of a 2009 pandemic H1N1 influenza virus isolate in an antibody-dependent manner. However, human immunization with trivalent inactivated influenza virus vaccine (TIV) only rarely and modestly boosted existing levels of anti-NP IgG. Similar results were observed in mice, although the reaction could be enhanced with adjuvants, by adjusting the stoichiometry among NP and other vaccine components, and by increasing the interval between TIV prime and boost. Importantly, mouse heterosubtypic immunity that had waned over several months could be enhanced by injecting purified anti-NP IgG or by boosting with NP protein, correlating with a long-lived increase in anti-NP antibody titers. Thus, current immunization strategies poorly induce NP-immune antibody that is nonetheless capable of contributing to long-lived cross-protection. The high conservation of NP antigen and the known longevity of antibody responses suggest that the antiviral activity of anti-NP IgG may provide a critically needed component of a universal influenza vaccine.
Journal of Immunology | 2008
Javier Rangel-Moreno; Damian M. Carragher; Ravi S. Misra; Kim Kusser; Louise Hartson; Amy Moquin; Frances E. Lund; Troy D. Randall
Immunity to heterosubtypic strains of influenza is thought to be mediated primarily by memory T cells, which recognize epitopes in conserved proteins. However, the involvement of B cells in this process is controversial. We show in this study that influenza-specific memory T cells are insufficient to protect mice against a lethal challenge with a virulent strain of influenza in the absence of B cells. B cells contribute to protection in multiple ways. First, although non-neutralizing Abs by themselves do not provide any protection to challenge infection, they do reduce weight loss, lower viral titers, and promote recovery of mice challenged with a virulent heterosubtypic virus in the presence of memory T cells. Non-neutralizing Abs also facilitate the expansion of responding memory CD8 T cells. Furthermore, in cooperation with memory T cells, naive B cells also promote recovery from infection with a virulent heterosubtypic virus by generating new neutralizing Abs. These data demonstrate that B cells use multiple mechanisms to promote resistance to heterosubtypic strains of influenza and suggest that vaccines that elicit both memory T cells and Abs to conserved epitopes of influenza may be an effective defense against a wide range of influenza serotypes.
Vaccine | 2011
Paula A. Lanthier; Gail E. Huston; Amy Moquin; Sheri M. Eaton; Frank M. Szaba; Lawrence W. Kummer; Micheal P. Tighe; Jacob E. Kohlmeier; Patrick J. Blair; Michael Broderick; Stephen T. Smiley; Laura Haynes
Influenza A infection induces a massive inflammatory response in the lungs that leads to significant illness and increases the susceptibility to secondary bacterial pneumonia. The most efficient way to prevent influenza infection is through vaccination. While inactivated vaccines induce protective levels of serum antibodies to influenza hemaglutinin (HA) and neuraminidase (NA) surface proteins, these are strain specific and offer little protection against heterosubtypic influenza viruses. In contrast, live attenuated influenza vaccines (LAIVs) induce a T cell response in addition to antibody responses against HA and NA surface proteins. Importantly, LAIV vaccination induces a response in a mouse model that protects against illness due to heterosubtypic influenza strains. While it is not completely clear what is the mechanism of action of LAIV heterosubtypic protection in humans, it has been shown that LAIV induces heterosubtypic protection in mice that is dependent upon a Type 1 immune response and requires CD8 T cells. In this study, we show that LAIV-induced immunity leads to significantly reduced viral titers and inflammatory responses in the lungs of mice following heterosubtypic infection. Not only are viral titers reduced in LAIV vaccinated mice, the amounts of inflammatory cytokines and chemokines in lung tissue are significantly lower. Additionally, we show that LAIV vaccination of healthy adults also induces a robust Type 1 memory response including the production of chemokines and cytokines involved in T cell activation and recruitment. Thus, our results indicate that LAIV vaccination functions by inducing immune memory which can act to modulate the immune response to subsequent heterosubtypic challenge by influencing both innate and adaptive responses.
Journal of Immunology | 2001
Timothy A. Gondré-Lewis; Amy Moquin; James R. Drake
Although Ag-specific B lymphocytes can process Ag and express peptide-class II complexes as little as 1 h after Ag exposure, it requires 3–5 days for the immune system to develop a population of Ag-specific effector CD4 T lymphocytes to interact with these complexes. Presently, it is unclear how B cells maintain the expression of cell surface antigenic peptide-class II complexes until effector CD4 T lymphocytes become available. Therefore, we investigated B cell receptor (BCR)-mediated Ag processing and presentation by normal B lymphocytes to determine whether these cells have a mechanism to prolong the cell surface expression of peptide-class II complexes derived from the processing of cognate Ag. Interestingly, after transit of early endocytic compartments, internalized Ag-BCR complexes are delivered to nonterminal late endosomes where they persist for a prolonged period of time. In contrast, Ags internalized via fluid phase endocytosis are rapidly delivered to terminal lysosomes and degraded. Moreover, persisting Ag-BCR complexes within nonterminal late endosomes exhibit a higher degree of colocalization with the class II chaperone HLA-DM/H2-M than with the HLA-DM/H2-M regulator HLA-DO/H2-O. Finally, B cells harboring persistent Ag-BCR complexes exhibit prolonged cell surface expression of antigenic peptide-class II complexes. These results demonstrate that B lymphocytes possess a mechanism for prolonging the intracellular persistence of Ag-BCR complexes within nonterminal late endosomes and suggest that this intracellular Ag persistence allows for the prolonged cell surface expression of peptide-class II complexes derived from the processing of specific Ag.
Journal of Immunology | 2003
Michelle A. Putnam; Amy Moquin; Megan Merrihew; Christopher Outcalt; Emily Sorge; Adriana Caballero; Timothy A. Gondré-Lewis; James R. Drake
The Ag-specific B cell receptor (BCR) expressed by B lymphocytes has two distinct functions upon interaction with cognate Ag: signal transduction (generation of intracellular second messenger molecules) and Ag internalization for subsequent processing and presentation. While it is known that plasma membrane domains, termed lipid rafts, are involved in BCR-mediated signal transduction, the precise role of plasma membrane lipid rafts in BCR-mediated Ag internalization and intracellular trafficking is presently unclear. Using a highly characterized model system, it was determined that while plasma membrane lipid rafts can be internalized by B lymphocytes, lipid rafts do not represent a major pathway for the rapid and efficient internalization of cell surface Ag-BCR complexes. Moreover, internalized plasma membrane lipid rafts are delivered to intracellular compartments distinct from those to which the bulk of internalized Ag-BCR complexes are delivered. These results demonstrate that B lymphocytes, like other cell types, possess at least two distinct endocytic pathways (i.e., clathrin-coated pits and plasma membrane lipid rafts) that deliver internalized ligands to distinct intracellular compartments. Furthermore, Ag-BCR complexes differentially access these two distinct internalization pathways.
Journal of Biochemical and Biophysical Methods | 2001
Colm Morrissey; Johnathon N. Lakins; Amy Moquin; Maha Hussain; Martin Tenniswood
We have developed and validated a robust antigen capture assay for the measurement of serum clusterin. Increased clusterin expression, and alterations in serum clusterin levels have been associated with a number of disease states. In particular, clusterin has been shown to be associated with tissue regression and apoptosis in the rat ventral prostate in response to androgen ablation or administration of anti-androgens. The object of this study was to determine if changes in human serum clusterin can be used as a diagnostic or prognostic marker to monitor the response to hormonal therapy in patients with prostate cancer, and to determine if clusterin concentrations increase with the progression towards androgen independence. The antigen capture assay was used for an extensive analysis of human serum clusterin concentration in fasting males, and to determine if there is any relationship between clusterin and age or cholesterol levels. The average clusterin level in serum is 101+/-42 microg/ml (n=96). There is no correlation to age or serum cholesterol levels. Analysis of serum clusterin levels in patients with newly diagnosed prostate cancer (n=5), hormone responsive tumors (n=5), and hormone refractory disease (n=5), demonstrates that no significant changes in serum clusterin levels accompany the progression of prostatic disease, or response to hormone therapy.
Immunity | 2012
André Ballesteros-Tato; Beatriz León; Beth A. Graf; Amy Moquin; Pamela Scott Adams; Frances E. Lund; Troy D. Randall