Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy N. Abell is active.

Publication


Featured researches published by Amy N. Abell.


Nature | 2009

Coordination of Rho GTPase activities during cell protrusion

Matthias Machacek; Louis Hodgson; Christopher Welch; Hunter L. Elliott; Olivier Pertz; Perihan Nalbant; Amy N. Abell; Gary L. Johnson; Klaus M. Hahn; Gaudenz Danuser

The GTPases Rac1, RhoA and Cdc42 act together to control cytoskeleton dynamics. Recent biosensor studies have shown that all three GTPases are activated at the front of migrating cells, and biochemical evidence suggests that they may regulate one another: Cdc42 can activate Rac1 (ref. 8), and Rac1 and RhoA are mutually inhibitory. However, their spatiotemporal coordination, at the seconds and single-micrometre dimensions typical of individual protrusion events, remains unknown. Here we examine GTPase coordination in mouse embryonic fibroblasts both through simultaneous visualization of two GTPase biosensors and using a ‘computational multiplexing’ approach capable of defining the relationships between multiple protein activities visualized in separate experiments. We found that RhoA is activated at the cell edge synchronous with edge advancement, whereas Cdc42 and Rac1 are activated 2 μm behind the edge with a delay of 40 s. This indicates that Rac1 and RhoA operate antagonistically through spatial separation and precise timing, and that RhoA has a role in the initial events of protrusion, whereas Rac1 and Cdc42 activate pathways implicated in reinforcement and stabilization of newly expanded protrusions.


Nature Cell Biology | 2003

Rac-MEKK3-MKK3 scaffolding for p38 MAPK activation during hyperosmotic shock.

Mark T. Uhlik; Amy N. Abell; Nancy Lassignal Johnson; Weiyong Sun; Bruce D. Cuevas; Katherine E. Lobel-Rice; Eric A. Horne; Mark L. Dell'Acqua; Gary L. Johnson

Sensing the osmolarity of the environment is a critical response for all organisms. Whereas bacteria will migrate away from high osmotic conditions, most eukaryotic cells are not motile and use adaptive metabolic responses for survival. The p38 MAPK pathway is a crucial mediator of survival during cellular stress. We have discovered a novel scaffold protein that binds to actin, the GTPase Rac, and the upstream kinases MEKK3 and MKK3 in the p38 MAPK phospho-relay module. RNA interference (RNAi) demonstrates that MEKK3 and the scaffold protein are required for p38 activation in response to sorbitol-induced hyperosmolarity. FRET identifies a cytoplasmic complex of the MEKK3 scaffold protein that is recruited to dynamic actin structures in response to sorbitol treatment. Through its ability to bind actin, relocalize to Rac-containing membrane ruffles and its obligate requirement for p38 activation in response to sorbitol, we have termed this protein osmosensing scaffold for MEKK3 (OSM). The Rac–OSM–MEKK3–MKK3 complex is the mammalian counterpart of the CDC42–STE50–STE11–Pbs2 complex in Saccharomyces cerevisiae that is required for the regulation of p38 activity.


Oncogene | 2007

Role of mitogen-activated protein kinase kinase kinases in signal integration

Bruce D. Cuevas; Amy N. Abell; Gary L. Johnson

Mitogen-activated protein kinases (MAPKs) are members of a dynamic protein kinase network through which diverse stimuli regulate the spatio-temporal activities of complex biological systems. MAPKs regulate critical cellular functions required for homeostasis such as the expression of cytokines and proteases, cell cycle progression, cell adherence, motility and metabolism. MAPKs therefore influence cell proliferation, differentiation, survival, apoptosis and development. In vertebrates, five MAPK families are regulated by MAPK kinase kinase-MAPK kinase-MAPK (MKKK-MKK-MAPK) phosphorelay systems. There are at least 20 MKKKs that selectively phosphorylate and activate different combinations of the seven MKKs, resulting in a specific activation profile of members within the five MAPK families. MKKKs are differentially activated by upstream stimuli including cytokines, antigens, toxins and stress insults providing a mechanism to integrate the activation of different MAPKs with the cellular response to each stimulus. Thus, MKKKs can be considered as ‘signaling hubs’ that regulate the specificity of MAPK activation. In this review, we describe how the MKKK ‘hub’ function regulates the specificity of MAPK activation, highlighting MKKKs as targets for therapeutic intervention in cancer and other diseases.


Journal of Biological Chemistry | 2010

Rho Kinase Inhibition Rescues the Endothelial Cell Cerebral Cavernous Malformation Phenotype

Asya L. Borikova; Christopher F. Dibble; Noah Sciaky; Christopher Welch; Amy N. Abell; Sompop Bencharit; Gary L. Johnson

Cerebral cavernous malformations (CCM) are vascular lesions causing seizures and stroke. Mutations causing inactivation of one of three genes, ccm1, -2, or -3, are sufficient to induce vascular endothelial cell defects resulting in CCM. Herein, we show that loss of expression of the CCM1, -2, or -3 proteins causes a marked increase in expression of the GTPase RhoA. Live cell imaging with a RhoA-specific biosensor demonstrates increased RhoA activity with loss of CCM1, -2, or -3, with an especially pronounced RhoA activation in both the cytosol and the nucleus with loss of CCM1 expression. Increased RhoA activation was associated with Rho kinase-dependent phosphorylation of myosin light chain 2. Functionally, loss of CCM1, -2, or -3 inhibited endothelial cell vessel-like tube formation and extracellular matrix invasion, each of which is rescued by chemical inhibition or short hairpin RNA knockdown of Rho kinase. The findings, for the first time, define a signaling network for CCM1, -2, and -3 in CCM pathology, whereby loss of CCM1, -2, or -3 protein expression results in increased RhoA activity, with the activation of Rho kinase responsible for endothelial cell dysregulation. The results define Rho kinase as a therapeutic target to rescue endothelial cells from loss of CCM protein function.


Cell Stem Cell | 2011

MAP3K4/CBP-Regulated H2B Acetylation Controls Epithelial-Mesenchymal Transition in Trophoblast Stem Cells

Amy N. Abell; Nicole Vincent Jordan; Weichun Huang; Aleix Prat; Alicia A. Midland; Nancy Lassignal Johnson; Deborah A. Granger; Piotr A. Mieczkowski; Charles M. Perou; Shawn M. Gomez; Leping Li; Gary L. Johnson

Epithelial stem cells self-renew while maintaining multipotency, but the dependence of stem cell properties on maintenance of the epithelial phenotype is unclear. We previously showed that trophoblast stem (TS) cells lacking the protein kinase MAP3K4 maintain properties of both stemness and epithelial-mesenchymal transition (EMT). Here, we show that MAP3K4 controls the activity of the histone acetyltransferase CBP, and that acetylation of histones H2A and H2B by CBP is required to maintain the epithelial phenotype. Combined loss of MAP3K4/CBP activity represses expression of epithelial genes and causes TS cells to undergo EMT while maintaining their self-renewal and multipotency properties. The expression profile of MAP3K4-deficient TS cells defines an H2B acetylation-regulated gene signature that closely overlaps with that of human breast cancer cells. Taken together, our data define an epigenetic switch that maintains the epithelial phenotype in TS cells and reveals previously unrecognized genes potentially contributing to breast cancer.


Molecular and Cellular Biology | 2005

Ablation of MEKK4 kinase activity causes neurulation and skeletal patterning defects in the mouse embryo

Amy N. Abell; Jaime A. Rivera-Pérez; Bruce D. Cuevas; Mark T. Uhlik; Susan Sather; Nancy Lassignal Johnson; Suzanne K. Minton; Jean M. Lauder; Ann M. Winter-Vann; Kazuhiro Nakamura; Terry Magnuson; Richard R. Vaillancourt; Lynn E. Heasley; Gary L. Johnson

ABSTRACT Skeletal disorders and neural tube closure defects represent clinically significant human malformations. The signaling networks regulating normal skeletal patterning and neurulation are largely unknown. Targeted mutation of the active site lysine of MEK kinase 4 (MEKK4) produces a kinase-inactive MEKK4 protein (MEKK4K1361R). Embryos homozygous for this mutation die at birth as a result of skeletal malformations and neural tube defects. Hindbrains of exencephalic MEKK4K1361R embryos show a striking increase in neuroepithelial cell apoptosis and a dramatic loss of phosphorylation of MKK3 and -6, mitogen-activated protein kinase kinases (MKKs) regulated by MEKK4 in the p38 pathway. Phosphorylation of MAPK-activated protein kinase 2, a p38 substrate, is also inhibited, demonstrating a loss of p38 activity in MEKK4K1361R embryos. In contrast, the MEK1/2-extracellular signal-regulated kinase 1 (ERK1)/ERK2 and MKK4-Jun N-terminal protein kinase pathways were unaffected. The p38 pathway has been shown to regulate the phosphorylation and expression of the small heat shock protein HSP27. Compared to the wild type, MEKK4K1361R fibroblasts showed significantly reduced phosphorylation of p38 and HSP27, with a corresponding heat shock-induced instability of the actin cytoskeleton. Together, these data demonstrate MEKK4 regulation of p38 and that substrates downstream of p38 control cellular homeostasis. The findings are the first demonstration that MEKK4-regulated p38 activity is critical for neurulation.


Molecular and Cellular Biology | 2009

Trophoblast Stem Cell Maintenance by Fibroblast Growth Factor 4 Requires MEKK4 Activation of Jun N-Terminal Kinase†

Amy N. Abell; Deborah A. Granger; Nancy Lassignal Johnson; Nicole Vincent-Jordan; Christopher F. Dibble; Gary L. Johnson

ABSTRACT Trophoblast differentiation during placentation involves an epithelial-mesenchymal transition (EMT) with loss of E-cadherin and gain of trophoblast invasiveness. Mice harboring a point mutation that renders inactive the mitogen-activated protein kinase kinase kinase MEKK4 exhibit dysregulated placental development with increased trophoblast invasion. Isolated MEKK4 kinase-inactive trophoblast stem (TS) cells cultured under undifferentiating, self-renewing conditions in the presence of fibroblast growth factor 4 (FGF4) display increased expression of Slug, Twist, and matrix metalloproteinase 2 (MMP2), loss of E-cadherin, and hyperinvasion of extracellular matrix, each a hallmark of EMT. MEKK4 kinase-inactive TS cells show a preferential differentiation to Tpbpα- and Gcm1-positive trophoblasts, which are indicative of spongiotrophoblast and syncytiotrophoblast differentiation, respectively. FGF4-stimulated Jun N-terminal kinase (JNK) and p38 activity is markedly reduced in MEKK4 kinase-inactive TS cells. Chemical inhibition of JNK in wild-type TS cells induced a similar EMT response as loss of MEKK4 kinase activity, including inhibition of E-cadherin expression and increased expression of Slug, MMP2, Tpbpα, and Gcm1. Chromatin immunoprecipitation analyses revealed changes in AP-1 composition with increased Fra-2 and decreased Fra-1 and JunB binding to the regulatory regions of Gcm1 and MMP2 genes in MEKK4 kinase-inactive TS cells. Our results define MEKK4 as a signaling hub for FGF4 activation of JNK that is required for maintenance of TS cells in an undifferentiated state.


Journal of Biological Chemistry | 2007

MEKK4 stimulation of p38 and JNK activity is negatively regulated by GSK3β

Amy N. Abell; Deborah A. Granger; Gary L. Johnson

The MAPK kinase kinase MEKK4 is required for neurulation and skeletal patterning during mouse development. MEKK4 phosphorylates and activates MKK4/MKK7 and MKK3/MKK6 leading to the activation of JNK and p38, respectively. MEKK4 is believed to be auto-inhibited, and its interaction with other proteins controls its dimerization and activation. TRAF4, GADD45, and Axin each bind and activate MEKK4, with TRAF4 and Axin binding to the kinase domain and GADD45 binding within the N-terminal regulatory domain. Here we show that similar to the interaction with TRAF4 and Axin, the kinase domain of MEKK4 interacts with the multifunctional serine/threonine kinase GSK3β. GSK3β binding to MEKK4 blocks MEKK4 dimerization that is required for MEKK4 activation, effectively inhibiting MEKK4 stimulation of the JNK and p38 MAPK pathways. Inhibition of GSK3β kinase activity with SB216763 results in enhanced MEKK4 kinase activity and increased JNK and p38 activation, indicating that an active state of GSK3β is required for binding and inhibition of MEKK4 dimerization. Furthermore, GSK3β phosphorylates specific serines and threonines in the N terminus of MEKK4. Together, these findings demonstrate that GSK3β binds to the kinase domain of MEKK4 and regulates MEKK4 dimerization. However, unlike TRAF4, Axin, and GADD45, GSK3β inhibits MEKK4 activity and prevents its activation of JNK and p38. Thus, control of MEKK4 dimerization is regulated both positively and negatively by its interaction with specific proteins.


Molecular and Cellular Biology | 2013

SWI/SNF Chromatin-Remodeling Factor Smarcd3/Baf60c Controls Epithelial-Mesenchymal Transition by Inducing Wnt5a Signaling

Nicole Vincent Jordan; Aleix Prat; Amy N. Abell; Jon S. Zawistowski; Noah Sciaky; Olga Karginova; Bingying Zhou; Brian T. Golitz; Charles M. Perou; Gary L. Johnson

ABSTRACT We previously identified a gene signature predicted to regulate the epithelial-mesenchymal transition (EMT) in both epithelial tissue stem cells and breast cancer cells. A phenotypic RNA interference (RNAi) screen identified the genes within this 140-gene signature that promoted the conversion of mesenchymal epithelial cell adhesion molecule-negative (EpCAM−) breast cancer cells to an epithelial EpCAM+/high phenotype. The screen identified 10 of the 140 genes whose individual knockdown was sufficient to promote EpCAM and E-cadherin expression. Among these 10 genes, RNAi silencing of the SWI/SNF chromatin-remodeling factor Smarcd3/Baf60c in EpCAM− breast cancer cells gave the most robust transition from the mesenchymal to epithelial phenotype. Conversely, expression of Smarcd3/Baf60c in immortalized human mammary epithelial cells induced an EMT. The mesenchymal-like phenotype promoted by Smarcd3/Baf60c expression resulted in gene expression changes in human mammary epithelial cells similar to that of claudin-low triple-negative breast cancer cells. These mammary epithelial cells expressing Smarcd3/Baf60c had upregulated Wnt5a expression. Inhibition of Wnt5a by either RNAi knockdown or blocking antibody reversed Smarcd3/Baf60c-induced EMT. Thus, Smarcd3/Baf60c epigenetically regulates EMT by activating WNT signaling pathways.


Nucleic Acids Research | 2011

Efficiently identifying genome-wide changes with next-generation sequencing data

Weichun Huang; David M. Umbach; Nicole Vincent Jordan; Amy N. Abell; Gary L. Johnson; Leping Li

We propose a new and effective statistical framework for identifying genome-wide differential changes in epigenetic marks with ChIP-seq data or gene expression with mRNA-seq data, and we develop a new software tool EpiCenter that can efficiently perform data analysis. The key features of our framework are: (i) providing multiple normalization methods to achieve appropriate normalization under different scenarios, (ii) using a sequence of three statistical tests to eliminate background regions and to account for different sources of variation and (iii) allowing adjustment for multiple testing to control false discovery rate (FDR) or family-wise type I error. Our software EpiCenter can perform multiple analytic tasks including: (i) identifying genome-wide epigenetic changes or differentially expressed genes, (ii) finding transcription factor binding sites and (iii) converting multiple-sample sequencing data into a single read-count data matrix. By simulation, we show that our framework achieves a low FDR consistently over a broad range of read coverage and biological variation. Through two real examples, we demonstrate the effectiveness of our framework and the usages of our tool. In particular, we show that our novel and robust ‘parsimony’ normalization method is superior to the widely-used ‘tagRatio’ method. Our software EpiCenter is freely available to the public.

Collaboration


Dive into the Amy N. Abell's collaboration.

Top Co-Authors

Avatar

Gary L. Johnson

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Nancy Lassignal Johnson

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Nicole Vincent Jordan

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Bruce D. Cuevas

Loyola University Chicago

View shared research outputs
Top Co-Authors

Avatar

Deborah A. Granger

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jon S. Zawistowski

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Kazuhiro Nakamura

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Shawn M. Gomez

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Alicia A. Midland

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Charles M. Perou

University of North Carolina at Chapel Hill

View shared research outputs
Researchain Logo
Decentralizing Knowledge