Amy P. Schmidt
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amy P. Schmidt.
The Journal of Pathology | 2012
Melissa K. McConechy; Jiarui Ding; Maggie Cheang; Kimberly C. Wiegand; Janine Senz; Alicia A. Tone; Winnie Yang; Leah M Prentice; Kane Tse; Thomas Zeng; Helen McDonald; Amy P. Schmidt; David G. Mutch; Jessica N. McAlpine; Martin Hirst; Sohrab P. Shah; Cheng-Han Lee; Paul J. Goodfellow; C. Blake Gilks; David Huntsman
The classification of endometrial carcinomas is based on pathological assessment of tumour cell type; the different cell types (endometrioid, serous, carcinosarcoma, mixed, undifferentiated, and clear cell) are associated with distinct molecular alterations. This current classification system for high‐grade subtypes, in particular the distinction between high‐grade endometrioid (EEC‐3) and serous carcinomas (ESC), is limited in its reproducibility and prognostic abilities. Therefore, a search for specific molecular classifiers to improve endometrial carcinoma subclassification is warranted. We performed target enrichment sequencing on 393 endometrial carcinomas from two large cohorts, sequencing exons from the following nine genes: ARID1A, PPP2R1A, PTEN, PIK3CA, KRAS, CTNNB1, TP53, BRAF, and PPP2R5C. Based on this gene panel, each endometrial carcinoma subtype shows a distinct mutation profile. EEC‐3s have significantly different frequencies of PTEN and TP53 mutations when compared to low‐grade endometrioid carcinomas. ESCs and EEC‐3s are distinct subtypes with significantly different frequencies of mutations in PTEN, ARID1A, PPP2R1A, TP53, and CTNNB1. From the mutation profiles, we were able to identify subtype outliers, ie cases diagnosed morphologically as one subtype but with a mutation profile suggestive of a different subtype. Careful review of these diagnostically challenging cases suggested that the original morphological classification was incorrect in most instances. The molecular profile of carcinosarcomas suggests two distinct mutation profiles for these tumours: endometrioid‐type (PTEN, PIK3CA, ARID1A, KRAS mutations) and serous‐type (TP53 and PPP2R1A mutations). While this nine‐gene panel does not allow for a purely molecularly based classification of endometrial carcinoma, it may prove useful as an adjunct to morphological classification and serve as an aid in the classification of problematic cases. If used in practice, it may lead to improved diagnostic reproducibility and may also serve to stratify patients for targeted therapeutics. Copyright
International Journal of Cancer | 2007
Huiping Chen; Nicholas P. Taylor; Kaisa Sotamaa; David G. Mutch; Matthew A. Powell; Amy P. Schmidt; Sheng Feng; H. Hampel; Albert de la Chapelle; Paul J. Goodfellow
Epigenetic silencing of MLH1 is the most common cause of defective DNA mismatch repair in endometrial and colorectal cancers. We hypothesized that variation in the MLH1 gene might contribute to the risk for MLH1 methylation and epigenetic silencing. We undertook a case‐control study to test for the association between MLH1 variants and abnormal MLH1 methylation. Eight MLH1 SNPs were typed in the normal DNA from women with endometrial carcinoma. For these studies, the cases were women whose cancers exhibited MLH1 methylation (N = 98) and the controls were women whose cancers had no MLH1 methylation (N = 219). One MLH1 SNP, rs1800734, located in the MLH1 CpG island at −93 from the translation start site, was significantly associated with MLH1 methylation as were age at diagnosis and patient body mass index. In validation experiments, a similar‐sized cohort of colorectal carcinoma patients (N = 387) showed a similar degree of association with the −93 SNP; a smaller cohort of endometrial carcinomas (N = 181) showed no association. Combining all 3 cohorts showed an odds ratio of 1.61 (95% CI: 1.20–2.16) for the AA or AG vs. GG genotype at the −93 SNP. Identification of risk alleles for MLH1 methylation could shed light on mechanisms of epigenetic silencing and may ultimately lead to new approaches to the prevention or treatment of malignancies associated with MLH1 inactivation.
Journal of Clinical Oncology | 2015
Paul J. Goodfellow; Caroline C. Billingsley; Heather A. Lankes; Shamshad Ali; David E. Cohn; R. Broaddus; Nilsa C. Ramirez; Colin C. Pritchard; Heather Hampel; Alexis S. Chassen; Luke V. Simmons; Amy P. Schmidt; Feng Gao; Louise A. Brinton; Floor J. Backes; Lisa Landrum; Melissa A. Geller; Paul DiSilvestro; Michael L. Pearl; Shashikant Lele; Matthew A. Powell; Richard J. Zaino; David G. Mutch
Purpose The best screening practice for Lynch syndrome (LS) in endometrial cancer (EC) remains unknown. We sought to determine whether tumor microsatellite instability (MSI) typing along with immunohistochemistry (IHC) and MLH1 methylation analysis can help identify women with LS. Patients and Methods ECs from GOG210 patients were assessed for MSI, MLH1 methylation, and mismatch repair (MMR) protein expression. Each tumor was classified as having normal MMR, defective MMR associated with MLH1 methylation, or probable MMR mutation (ie, defective MMR but no methylation). Cancer family history and demographic and clinical features were compared for the three groups. Lynch mutation testing was performed for a subset of women. Results Analysis of 1,002 ECs suggested possible MMR mutation in 11.8% of tumors. The number of patients with a family history suggestive of LS was highest among women whose tumors were classified as probable MMR mutation (P = .001). Lynch mutations were identified in 41% of patient cases classified as probable mutation (21 of 51 tested). One of the MSH6 Lynch mutations was identified in a patient whose tumor had intact MSH6 expression. Age at diagnosis was younger for mutation carriers than noncarriers (54.3 v 62.3 years; P < .01), with five carriers diagnosed at age > 60 years. Conclusion Combined MSI, methylation, and IHC analysis may prove useful in Lynch screening in EC. Twenty-four percent of mutation carriers presented with ECs at age > 60 years, and one carrier had an MSI-positive tumor with no IHC defect. Restricting Lynch testing to women diagnosed at age < 60 years or to women with IHC defects could result in missing a substantial fraction of genetic disease.
Journal of Clinical Oncology | 2009
Israel Zighelboim; Amy P. Schmidt; Feng Gao; Premal H. Thaker; Matthew A. Powell; Janet S. Rader; Randall K. Gibb; David G. Mutch; Paul J. Goodfellow
PURPOSE Mutations in the DNA damage response gene ATR (exon 10 A10 mononucleotide repeat) have been previously described in endometrial and other cancers with defective DNA mismatch repair. In vitro studies showed that endometrial cancer cell lines with A10 repeat tract truncating mutations have a failure in the ATR-dependent DNA damage response. Cell lines carrying A10 mutations fail to trigger Chk1 activation in response to ionizing radiation and topoisomerase inhibitors. We sought to determine the frequency and clinicopathologic significance of ATR mutations in patients with endometrioid endometrial cancer. PATIENTS AND METHODS The ATR exon 10 A10 repeat was analyzed by direct sequencing in 141 tumors with microsatellite instability (MSI-positive) and 107 microsatellite stable (MSI-negative) tumors. The relationships between mutations and clinicopathologic variables, including overall and disease-free survival, were assessed using contingency table tests and Cox proportional hazard models. Results ATR mutations were identified in 12 cases (4.8%; three cases with insertions and nine cases with deletions). Mutations occurred exclusively in MSI-positive tumors (P = .02), with an overall mutation rate of 8.5%. Mutation was not associated with age, race, surgical stage, International Federation of Gynecology and Obstetrics grade, or adjuvant treatment. Multivariate analyses revealed a significant association with reduced overall survival (hazard ratio [HR] = 3.88; 95% CI, 1.64 to 9.18; P = .002) and disease-free survival (HR = 4.29; 95% CI, 1.48 to 12.45; P = .007). CONCLUSION Truncating ATR mutations in endometrial cancers are associated with biologic aggressiveness as evidenced by reduced disease-free and overall survival. Knowledge of ATR mutation status may hold promise for individualized treatment and targeted therapies in patients with endometrial cancer.
Oncogene | 1999
John B. Sunwoo; Paul C. Sun; Vivek K. Gupta; Amy P. Schmidt; Samir K. El-Mofty; Steven B. Scholnick
Several regions of chromsome arm 8p are frequently deleted in a variety of human malignancies including those of the prostate, head and neck, lung, and colon, suggesting that there is more than one tumor suppressor gene on this chromosome arm. Both laryngeal and oral squamous cell carcinomas exhibit three distinct and nonoverlapping regions of deletion on 8p. We have further refined the localization of the putative suppressor in 8p23 by using eight microsatellite loci to create a high resolution deletion map of 150 squamous cell carcinomas of the larynx and oral cavity. These new data demonstrate that there are two distinct classes of deletion within this relatively small region of the chromosome and suggest two possible locations for the gene within the D8S264 to D8S1788 interval. We also determined that there is little difference between the allelic loss frequencies of microsatellites mapping near the telomeric ends of other chromosome arms and loci mapping to more centromere proximal regions of the same arm. These data suggest that the high allelic loss frequencies seen at 8p23 loci are not the result of a generalized instability of chromosome ends and are instead consistent with the activation of a specific suppressor gene.
Journal of Biological Chemistry | 2009
Carole L. Wilson; Amy P. Schmidt; Emma Pirilä; Erika V. Valore; Nicola Ferri; Timo Sorsa; Tomas Ganz; William C. Parks
Proteolytic processing of defensins is a critical mode of posttranslational regulation of peptide activity. Because mouse α-defensin precursors are cleaved and activated by matrix metalloproteinase-7 (MMP-7), we determined if additional defensin molecules, namely human neutrophil defensin pro-HNP-1 and β-defensins, are targets for MMP-7. We found that MMP-7 cleaves within the pro-domain of the HNP-1 precursor, a reaction that does not generate the mature peptide but produces a 59-amino acid intermediate. This intermediate, which retains the carboxyl-terminal end of the pro-domain, had antimicrobial activity, indicating that the residues important for masking defensin activity reside in the amino terminus of this domain. Mature HNP-1 was resistant to processing by MMP-7 unless the peptide was reduced and alkylated, demonstrating that only the pro-domain of α-defensins is normally accessible for cleavage by this enzyme. From the 47-residue HBD-1 precursor, MMP-7 catalyzed removal of 6 amino acids from the amino terminus. Neither a 39-residue intermediate form of HBD-1 nor the mature 36-residue form of HBD-1 was cleaved by MMP-7. In addition, both pro-HBD-2, with its shorter amino-terminal extension, and pro-HBD-3 were resistant to MMP-7. However, human and mouse β-defensin precursors that lack disulfide bonding contain a cryptic MMP-7-sensitive site within the mature peptide moiety. These findings support and extend accumulating evidence that the native three-dimensional structure of both α- and β-defensins protects the mature peptides against proteolytic processing by MMP-7. We also conclude that sites for MMP-7 cleavage are more common at the amino termini of α-defensin rather than β-defensin precursors, and that catalysis at these sites in α-defensin pro-domains results in acquisition of defensin activity.
International Journal of Cancer | 1999
Vivek K. Gupta; Amy P. Schmidt; Mary E. Pashia; John B. Sunwoo; Steven B. Scholnick
Several lines of evidence suggest that the progression of head‐and‐neck squamous‐cell carcinoma (HNSCC) involves inactivation of at least one and possibly several tumor‐suppressor genes on the long arm of chromosome 13. The fact that neither Rb1 nor BRCA2 appears to be inactivated in the majority of head‐and‐neck cancers suggests that novel tumor‐suppressor genes are involved. We have used microsatellite repeat polymorphisms and PCR to detect several distinct minimal regions of deletion on 13q in supraglottic and oral squamous‐cell carcinomas. One region maps to 13q34, the second to 13q14.3 and a potential third region, not reported in previous studies, maps to 13q12.1. Overall, 69% of the 145 tumors examined demonstrated allelic loss at one or more loci on 13q. We investigated whether a novel suppressor candidate mapping to 13q14.3‐q21, leukemia‐associated gene 1, might also be involved in the progression of squamous‐cell carcinomas. Multiplexed PCR revealed homozygous deletion of leu1 in one oral cavity tumor. This suggests that this gene or one nearby may be the actual target of deletions in this region of the chromosome arm. Int. J. Cancer (Pred. Oncol.) 84:453–457, 1999.
Clinical Cancer Research | 2011
Summer B. Dewdney; Bobbie Jo Rimel; Premal H. Thaker; Dominic M. Thompson; Amy P. Schmidt; Phyllis C. Huettner; David G. Mutch; Feng Gao; Paul J. Goodfellow
Purpose: Effective treatments for advanced endometrial cancer are lacking. Novel therapies that target specific pathways hold promise for better treatment outcomes with less toxicity. Mutation activation of the FGFR2/RAS/ERK pathway is important in endometrial tumorigenesis. RPS6KA6 (RSK4) is a putative tumor suppressor gene and is a target of the ERK signaling pathway. We explored the role of RSK4 in endometrial cancer. Experimental Design: We showed that RSK4 is expressed in normal endometrial tissue and is absent or much reduced in endometrial cancer. On the basis of previous reports on methylation in other cancers, we hypothesized that the absence of RSK4 transcript is associated with epigenetic silencing rather than mutation. We determined the methylation and expression status of RSK4 in primary endometrial cancers and cell lines and the effects of treatment with a demethylating agent. The relationship between RSK4 methylation and clinicopathologic features was assessed. Results: RSK4 is frequently hypermethylated in endometrial cancer cells lines and in primary endometrial cancer compared with normal endometrial tissue. RSK4 methylation was significantly associated with tumor grade, with higher grade tumors having lower levels of methylation (P = 0.03). RSK4 methylation levels were not associated with other clinical variables. We did find that RSK4 methylation was significantly correlated with expression in primary endometrial tumors and in cell lines. Reactivation of RSK4 by 5-azacytidine was successfully performed showing 8- to more than 1,200-fold increases in transcript levels. Conclusion:RSK4 appears to be epigenetically silenced in endometrial cancer as evidenced by hypermethylation. Its role as a suppressor in endometrial cancer, however, remains uncertain. Clin Cancer Res; 17(8); 2120–9. ©2011 AACR.
Clinical Cancer Research | 2007
Israel Zighelboim; Paul J. Goodfellow; Amy P. Schmidt; Ken C. Walls; Mary Ann Mallon; David G. Mutch; Pearlly S. Yan; Tim H M Huang; Matthew A. Powell
Purpose: To identify novel endometrial cancer-specific methylation markers and to determine their association with clinicopathologic variables and survival outcomes. Experimental Design: Differential methylation hybridization analysis (DMH) was done for 20 endometrioid endometrial cancers using normal endometrial DNA as a reference control. Combined bisulfite restriction analysis (COBRA) was used to verify methylation of sequences identified by DMH. Bisulfite sequencing was undertaken to further define CpG island methylation and to confirm the reliability of the COBRA. The methylation status of newly identified markers and the MLH1 promoter was evaluated by COBRA in a large series of endometrioid (n = 361) and non-endometrioid uterine cancers (n = 23). Results: DMH and COBRA identified two CpG islands methylated in tumors but not in normal DNAs: SESN3 (PY2B4) and TITF1 (SC77F6/154). Bisulfite sequencing showed dense methylation of the CpG islands and confirmed the COBRA assays. SESN3 and TITF1 were methylated in 20% and 70% of endometrioid tumors, respectively. MLH1 methylation was seen in 28% of the tumors. TITF1 and SESN3 methylation was highly associated with MLH1 methylation (P < 0.0001). SESN3 and TITF1 were methylated in endometrioid and non-endometrioid tumors, whereas MLH1 methylation was restricted to endometrioid tumors. Methylation at these markers was not associated with survival outcomes. Conclusions: The 5′ CpG islands for SESN3 and TITF1 are novel cancer-specific methylation markers. Methylation at these loci is strongly associated with aberrant MLH1 methylation in endometrial cancers. SESN3, TITF1 and MLH1 methylation did not predict overall survival or disease-free survival in this large cohort of patients with endometrioid endometrial cancer.
Immunology | 2006
Sukumar Pal; Amy P. Schmidt; Ellena M. Peterson; Carole L. Wilson; Luis M. de la Maza
To determine the role of matrix metalloproteinase‐7 (MMP‐7) in the pathogenesis of chlamydial infection, C57BL/6 wild‐type (WT) and MMP‐7 knockout (KO) mice were infected intravaginally with Chlamydia trachomatis mouse pneumonitis (MoPn). Over a period of 6 weeks postinfection, various organs were cultured for C. trachomatis. Other infected animals were mated to assess their fertility status. No significant differences were observed between WT and KO mice in the number of animals with positive vaginal cultures, length of time of C. trachomatis shedding, or the number of C. trachomatis inclusion‐forming units (IFU) recovered from their genital tracts. Likewise, the number of animals with hydrosalpinx, and the fertility rates and the number of embryos per mouse, were similar in WT and KO mice. Cultures from the spleen, lungs, kidneys and large intestine yielded similar numbers of IFU from WT and KO mice. However, the number of C. trachomatis IFU recovered from the small intestine of KO mice was significantly higher than that recovered from the small intestine of WT mice at 2 weeks postinfection. Because MMP‐7 KO mice are deficient in active intestinal α‐defensins, the results suggest that these components play a role in regulating colonization of the gastrointestinal tract by Chlamydia. By contrast, MMP‐7 is dispensable in the progression and resolution of the genital tract infection.