Amy R. Wolff
University of Otago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amy R. Wolff.
Behavioural Brain Research | 2008
Amy R. Wolff; David K. Bilkey
Maternal immune activation (MIA) is a newly developed animal model of schizophrenia. It has recently been reported that when MIA is induced with the cytokine inducer polyinosinic-polycytidilic acid (poly I:C) rats do not show deficits in prepulse inhibition (PPI), a test that is often considered a validity benchmark. The aim of the current experiment was to determine whether doses of poly I:C that have previously been shown to induce the behavioural features of schizophrenia can disrupt PPI in rats. Pregnant rat dams were given a single injection of poly I:C (4.0 mg/kg) or a saline injection equivalent on gestational day 15. Acoustic startle reactivity, habituation of the startle response and PPI were assessed in juvenile (34-35 day) and adult (>56 day) offspring. Prenatal immune activation did not alter startle reactivity on startle-only or prepulse-only trials. Furthermore, there was no effect of MIA on habituation of the startle response. MIA does however disrupt PPI, as PPI was reduced significantly in adult MIA offspring, and a trend was observed in the juvenile animals. Our finding that prenatal poly I:C can disrupt PPI in MIA rats further validates this procedure as an animal model.
The Journal of Neuroscience | 2010
Desiree D. Dickerson; Amy R. Wolff; David K. Bilkey
The synchrony of neural firing is believed to underlie the integration of information between and within neural networks in the brain. Abnormal synchronization of neural activity between distal brain regions has been proposed to underlie the core symptomatology in schizophrenia. This study investigated whether abnormal synchronization occurs between the medial prefrontal cortex (mPFC) and the hippocampus (HPC), two brain regions implicated in schizophrenia pathophysiology, using the maternal immune activation (MIA) animal model in rats. This neurodevelopmental model of schizophrenia is induced through a single injection of the synthetic immune system activator polyriboinosinic–polyribocytidylic acid, a synthetic analog of double-stranded RNA, a molecular pattern associated with viral infection, in pregnant rat dams. It is based on epidemiological evidence of increased risk of schizophrenia in adulthood after prenatal exposure to infection. In the present study, EEG coherence and neuronal phase-locking to underlying EEG were measured in freely moving MIA and control offspring. The MIA intervention produced significant reductions in mPFC–HPC EEG coherence that correlated with decreased prepulse inhibition of startle, a measure of sensory gating and a hallmark schizotypal behavioral measure. Furthermore, changes in the synchronization of neuronal firing to the underlying EEG were evident in the theta and low-gamma frequencies. Firing within a putative population of theta-modulated, gamma-entrained mPFC neurons was also reduced in MIA animals. Thus, MIA in rats produces a fundamental disruption in long-range neuronal synchrony in the brains of the adult offspring that models the disruption of synchrony observed in schizophrenia.
Behavioural Brain Research | 2010
Amy R. Wolff; David K. Bilkey
The developmental onset of deficits in sensorimotor-gating was examined in the maternal immune activation (MIA) animal model of schizophrenia. Pre-pulse inhibition (PPI) deficits were evident in juvenile MIA rats. This parallels the sensorimotor-gating deficits observed in groups at high-risk of schizophrenia. PPI deficits were independent of maternal weight loss following the MIA manipulation, suggesting that this measure may not be a useful marker of treatment efficacy.
Behavioural Brain Research | 2011
Amy R. Wolff; Kirsten R. Cheyne; David K. Bilkey
Schizophrenia is associated with changes in memory and contextual processing. As maternal infection is a risk factor in schizophrenia we tested for these impairments in a maternal immune activation (MIA) animal model. MIA rats displayed impaired object recognition memory, despite intact object discrimination, and a reduced reinstatement of rearing in response to a contextual manipulation. These results link MIA to contextual impairments in schizophrenia, possibly through changes in hippocampal function.
Hippocampus | 2013
Shakuntala Savanthrapadian; Amy R. Wolff; Barbara Logan; Michael J. Eckert; David K. Bilkey; Wickliffe C. Abraham
Individuals with schizophrenia display a number of structural and cytoarchitectural alterations in the hippocampus, suggesting that other functions such as synaptic plasticity may also be modified. Altered hippocampal plasticity is likely to affect memory processing, and therefore any such pathology may contribute to the cognitive symptoms of schizophrenia, which includes prominent memory impairment. The current study tested whether prenatal exposure to infection, an environmental risk factor that has previously been associated with schizophrenia produced changes in hippocampal synaptic transmission or plasticity, using the maternal immune activation (MIA) animal model. We also assessed performance in hippocampus‐dependent memory tasks to determine whether altered plasticity is associated with memory dysfunction. MIA did not alter basal synaptic transmission in either the dentate gyrus or CA1 of freely moving adult rats. It did, however, result in increased paired‐pulse facilitation of the dentate gyrus population spike and an enhanced persistence of dentate long‐term potentiation. MIA animals displayed slower learning of a reversed platform location in the water maze, and a similarly slowed learning during reversal in a spatial plus maze task. Together these findings are indicative of reduced behavioral flexibility in response to changes in task requirements. The results are consistent with the hypothesis that hippocampal plasticity is altered in schizophrenia, and that this change in plasticity mechanisms may underlie some aspects of cognitive dysfunction in this disorder.
Translational Psychiatry | 2014
Desiree D. Dickerson; K A Overeem; Amy R. Wolff; Joanna M. Williams; Wickliffe C. Abraham; David K. Bilkey
A failure of integrative processes within the brain, mediated via altered GABAergic inhibition, may underlie several features of schizophrenia. The present study examined, therefore, whether maternal immune activation (MIA), a risk factor for schizophrenia, altered inhibitory markers in the hippocampus and medial prefrontal cortex (mPFC), while also altering electroencephalogram (EEG) coherence between these regions. Pregnant rats were treated with saline or polyinosinic:polycytidylic acid mid-gestation. EEG depth recordings were made from the dorsal and ventral hippocampus and mPFC of male adult offspring. Glutamic decarboxylase (GAD67) levels were separately assayed in these regions using western blot. GAD67 expression was also assessed within parvalbumin-positive cells in the dorsal and ventral hippocampus using immunofluorescence alongside stereological analysis of parvalbumin-positive cell numbers. EEG coherence was reduced between the dorsal hippocampus and mPFC, but not the ventral hippocampus and mPFC, in MIA animals. Western blot and immunofluorescence analyses revealed that GAD67 expression within parvalbumin-positive cells was also reduced in the dorsal hippocampus relative to ventral hippocampus in MIA animals when compared with controls. This reduction was observed in the absence of parvalbumin-positive neuronal loss. Overall, MIA produced a selective reduction in EEG coherence between the dorsal hippocampus and mPFC that was paralleled by a similarly specific reduction in GAD67 within parvalbumin-positive cells of the dorsal hippocampus. These results suggest a link between altered inhibitory mechanisms and synchrony and, therefore point to potential mechanisms via which a disruption in neurodevelopmental processes might lead to pathophysiology associated with schizophrenia.
Schizophrenia Research | 2013
Yu Jing; Hu Zhang; Amy R. Wolff; David K. Bilkey; Ping Liu
Altered arginine metabolism has been implicated in the pathogenesis of schizophrenia. The present study measured the levels of L-arginine and its downstream metabolites in the sub-regions of the hippocampus, prefrontal cortex and cerebellum in adult rats that had been exposed to maternal immune activation (MIA; a risk factor for schizophrenia). MIA significantly increased L-arginine, L-ornithine and putrescine levels and decreased agmatine levels in the hippocampus and prefrontal cortex in a region-specific manner. Correlational analysis revealed a significant neurochemical-behavioural correlation. Cluster analyses showed that L-arginine and its main metabolites formed distinct groups, which changed as a function of MIA. These results demonstrate, for the first time, that MIA leads to altered arginine metabolism in the hippocampus and prefrontal cortex of the adult offspring.
Journal of Neurophysiology | 2007
Wickliffe C. Abraham; Barbara Logan; Amy R. Wolff; Lubica Benuskova
Brain Behavior and Immunity | 2015
Amy R. Wolff; David K. Bilkey
Schizophrenia Research | 2012
Amy R. Wolff; Desiree D. Dickerson; David K. Bilkey