Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy Robertson is active.

Publication


Featured researches published by Amy Robertson.


ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering | 2014

Offshore code comparison collaboration continuation within IEA Wind Task 30: Phase II results regarding a floating semisubmersible wind system

Amy Robertson; Jason Jonkman; Fabian Vorpahl; Wojciech Popko; Jacob Qvist; Lars Frøyd; Xiaohong Chen; José Azcona; Emre Uzunoglu; Carlos Guedes Soares; Chenyu Luan; Huang Yutong; Fu Pengcheng; Anders Yde; Torben J. Larsen; James Nichols; Ricard Buils; Liu Lei; Tor Anders Nygaard; Dimitris Manolas; Andreas Heege; Sigrid Ringdalen Vatne; Harald Ormberg; Tiago Duarte; Cyril Godreau; Hans Fabricius Hansen; Anders Wedel Nielsen; Hans Riber; Cédric Le Cunff; Friedemann Beyer

Offshore wind turbines are designed and analyzed using comprehensive simulation tools (or codes) that account for the coupled dynamics of the wind inflow, aerodynamics, elasticity, and controls of the turbine, along with the incident waves, sea current, hydrodynamics, mooring dynamics, and foundation dynamics of the support structure. This paper describes the latest findings of the code-to-code verification activities of the Offshore Code Comparison Collaboration Continuation project, which operates under the International Energy Agency Wind Task 30. In the latest phase of the project, participants used an assortment of simulation codes to model the coupled dynamic response of a 5-MW wind turbine installed on a floating semisubmersible in 200 m of water. Code predictions were compared from load case simulations selected to test different model features. The comparisons have resulted in a greater understanding of offshore floating wind turbine dynamics and modeling techniques, and better knowledge of the validity of various approximations. The lessons learned from this exercise have improved the participants’ codes, thus improving the standard of offshore wind turbine modeling.Copyright


ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering | 2013

Summary of Conclusions and Recommendations Drawn From the DeepCwind Scaled Floating Offshore Wind System Test Campaign

Amy Robertson; Jason Jonkman; Andrew J. Goupee; Alexander J. Coulling; Ian Prowell; James Browning; Marco Masciola; Paul Molta

The DeepCwind consortium is a group of universities, national labs, and companies funded under a research initiative by the U.S. Department of Energy (DOE) to support the research and development of floating offshore wind power. The two main objectives of the project are to better understand the complex dynamic behavior of floating offshore wind systems and to create experimental data for use in validating the tools used in modeling these systems. In support of these objectives, the DeepCwind consortium conducted a model test campaign in 2011 of three generic floating wind systems: a tension-leg platform (TLP), a spar-buoy (spar), and a semi-submersible (semi). Each of the three platforms was designed to support a 1/50th-scale model of a 5-MW wind turbine and was tested under a variety of wind/wave conditions.The focus of this paper is to summarize the work done by consortium members in analyzing the data obtained from the test campaign and its use for validating the offshore wind modeling tool, FAST.© 2013 ASME


Journal of Physics: Conference Series | 2014

The effects of second-order hydrodynamics on a semisubmersible floating offshore wind turbine

I. Bayati; Jason Jonkman; Amy Robertson; A. Platt

The objective of this paper is to assess the second-order hydrodynamic effects on a semisubmersible floating offshore wind turbine. Second-order hydrodynamics induce loads and motions at the sum- and difference-frequencies of the incident waves. These effects have often been ignored in offshore wind analysis, under the assumption that they are significantly smaller than first-order effects. The sum- and difference-frequency loads can, however, excite eigenfrequencies of a floating system, leading to large oscillations that strain the mooring system or vibrations that cause fatigue damage to the structure. Observations of supposed second-order responses in wave-tank tests performed by the DeepCwind consortium at the Maritime Research Institute Netherlands (MARIN) offshore basin suggest that these effects might be more important than originally expected. These observations inspired interest in investigating how second-order excitation affects floating offshore wind turbines and whether second-order hydrodynamics should be included in offshore wind simulation tools like FAST. In this work, the effects of second-order hydrodynamics on a floating semisubmersible offshore wind turbine are investigated. Because FAST is currently unable to account for second-order effects, a method to assess these effects was applied in which linearized properties of the floating wind system derived from FAST (including the 6x6 mass and stiffness matrices) are used by WAMIT to solve the first- and second-order hydrodynamics problems in the frequency domain. The method was applied to the Offshore Code Comparison Collaboration Continuation OC4-DeepCwind semisubmersible platform, supporting the National Renewable Energy Laboratorys 5-MW baseline wind turbine. In this paper, the loads and response of the system caused by the second-order hydrodynamics are analysed and compared to the first-order hydrodynamic loads and induced motions in the frequency domain. Further, the second-order loads and induced response data are compared to the loads and motions induced by aerodynamic loading as solved by FAST.


ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering | 2013

Importance of Second-Order Difference-Frequency Wave-Diffraction Forces in the Validation of a FAST Semi-Submersible Floating Wind Turbine Model

Alexander J. Coulling; Andrew J. Goupee; Amy Robertson; Jason Jonkman

To better access the abundant offshore wind resource, efforts are being made across the world to develop and improve floating offshore wind turbine technologies. A critical aspect of creating reliable, mature floating wind turbine technology is the development, verification, and validation of efficient computer-aided-engineering (CAE) tools. The National Renewable Energy Laboratory (NREL) has created FAST, a comprehensive, coupled analysis CAE tool for floating wind turbines, which has been verified and utilized in numerous floating wind turbine studies. Several efforts are underway to validate the floating platform functionality of FAST to complement its already validated aerodynamic and structural simulation capabilities. The research employs the 1/50th-scale DeepCwind wind/wave basin model test dataset, which was obtained at the Maritime Research Institute Netherlands (MARIN) in 2011. This paper describes further work being undertaken to continue this validation. These efforts focus on FAST’s ability to replicate global response behaviors associated with dynamic wind forces and second-order difference-frequency wave-diffraction forces separately and simultaneously.The first step is the construction of a FAST numerical model of the DeepCwind semi-submersible floating wind turbine that includes alterations for the addition of second-order difference-frequency wave-diffraction forces. The implementation of these second-order wave forces, which are not currently standard in FAST, are outlined and discussed. After construction of the FAST model, the calibration of the FAST model’s wind turbine aerodynamics, tower-bending dynamics, and platform hydrodynamic damping using select test data is discussed. Subsequently, select cases with coupled dynamic wind and irregular wave loading are simulated in FAST, and these results are compared to test data. Particular attention is paid to global motion and load responses associated with the interaction of the wind and wave environmental loads. These loads are most prevalent in the vicinity of the rigid-body motion natural frequencies for the DeepCwind semi-submersible, with dynamic wind forces and the second-order difference-frequency wave-diffraction forces driving the global system response at these low frequencies. Studies are also performed to investigate the impact of neglecting the second-order wave forces on the predictive capabilities of the FAST model. The comparisons of the simulation and test results highlight the ability of FAST to accurately capture many of the important coupled global response behaviors of the DeepCwind semi-submersible floating wind turbine.Copyright


ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering | 2013

Simulation-Length Requirements in the Loads Analysis of Offshore Floating Wind Turbines

Lorenz Haid; Gordon Stewart; Jason Jonkman; Amy Robertson; Matthew A. Lackner; Denis Matha

The design standard typically used for offshore wind system development, the International Electrotechnical Commission (IEC) 61400-3 fixed-bottom offshore design standard, explicitly states that “the design requirements specified in this standard are not necessarily sufficient to ensure the engineering integrity of floating offshore wind turbines” [1]. One major concern is the prescribed simulation length time of 10 minutes for a loads-analysis procedure, which is also typically used for land-based turbines. Because floating platforms have lower natural frequencies, which lead to fewer load cycles over a given period of time, and ocean waves have lower characteristic frequencies than wind turbulence, the 10-min simulation length recommended by the current standards for land-based and offshore turbines may be too short for combined wind and wave loading of floating offshore wind turbines (FOWTs). Therefore, the goal of this paper is to examine the appropriate length of a FOWT simulation — a fundamental question that needs to be answered to develop design requirements.To examine this issue, we performed a loads analysis of an example FOWT with varying simulation lengths, using FAST, the National Renewable Energy Laboratory’s (NREL’s) nonlinear aero-hydro-servo-elastic simulation tool. The offshore wind system used was the OC3-Hywind spar buoy, which was developed for use in the International Energy Agency (IEA) Offshore Code Comparison Collaborative (OC3) project, and supports NREL’s offshore 5-MW baseline turbine. Realistic metocean data from the National Oceanic and Atmospheric Administration (NOAA) and repeated periodic wind files were used to excite the structure. The results of the analysis clearly show that loads do not increase for longer simulations. In regard to fatigue, a sensitivity analysis shows that the procedure used for counting half cycles is more important than the simulation length itself. Based on these results, neither the simulation length nor the periodic wind files affect response statistics and loads for FOWTs (at least for the spar studied here); a result in contrast to the offshore oil and gas (O&G) industry, where running simulations of at least 3 hours in length is common practice.Copyright


Journal of Physics: Conference Series | 2014

Calibration and Validation of a Spar-Type Floating Offshore Wind Turbine Model using the FAST Dynamic Simulation Tool

James Browning; Jason Jonkman; Amy Robertson; Andrew J. Goupee

High-quality computer simulations are required when designing floating wind turbines because of the complex dynamic responses that are inherent with a high number of degrees of freedom and variable metocean conditions. In 2007, the FAST wind turbine simulation tool, developed and maintained by the U.S. Department of Energys (DOEs) National Renewable Energy Laboratory (NREL), was expanded to include capabilities that are suitable for modeling floating offshore wind turbines. In an effort to validate FAST and other offshore wind energy modeling tools, DOE funded the DeepCwind project that tested three prototype floating wind turbines at 1/50th scale in a wave basin, including a semisubmersible, a tension-leg platform, and a spar buoy. This paper describes the use of the results of the spar wave basin tests to calibrate and validate the FAST offshore floating simulation tool, and presents some initial results of simulated dynamic responses of the spar to several combinations of wind and sea states. Wave basin tests with the spar attached to a scale model of the NREL 5-megawatt reference wind turbine were performed at the Maritime Research Institute Netherlands under the DeepCwind project. This project included free-decay tests, tests with steady or turbulent wind and still water (both periodic and irregular waves with no wind), and combined wind/wave tests. The resulting data from the 1/50th model was scaled using Froude scaling to full size and used to calibrate and validate a full-size simulated model in FAST. Results of the model calibration and validation include successes, subtleties, and limitations of both wave basin testing and FAST modeling capabilities.


ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering | 2014

Extending the Capabilities of the Mooring Analysis Program: A Survey of Dynamic Mooring Line Theories for Integration Into FAST

Marco Masciola; Jason Jonkman; Amy Robertson

Techniques to model dynamic mooring lines take various forms. The most widely used models include a heuristic representation of the physics (such as a lumped-mass system), a finite-element analysis discretization of the lines (discretized in space), or a finite-difference model (which is discretized in both space and time). In this paper, the authors explore the features of the various models, weigh the advantages of each, and propose a plan for implementing one dynamic mooring line model into the open-source Mooring Analysis Program (MAP). MAP is currently used as a module for the FAST offshore wind turbine computer-aided engineering (CAE) tool to model mooring systems quasi-statically, although dynamic mooring capabilities are desired. Based on the exploration in this paper, the lumped-mass representation is selected for implementation in MAP based on its simplicity, low computational cost, and ability to provide physics similar to those captured by higher-order models.To begin, the underlying theories defining the three classes of dynamic mooring line models are identified and explored. This leads to insight into the capabilities of each representation. These capabilities are weighed against the current needs of the FAST wind turbine CAE tool, to which MAP will be coupled. Based on the assessment, a plan for integrating the dynamic mooring line theory into the current MAP structure is developed. Common problems arising from the determination of the model static equilibrium and known issues with numerical stability are addressed. Because MAP is a module that FAST can call, a plan consistent with the FAST modularization framework principles is described. Adding dynamic mooring line capabilities extends the features in MAP and also allows uncoupled analysis to be performed through MAP’s native Python bindings.Copyright


ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering | 2014

Comparison of Hydrodynamic Load Predictions Between Reduced Order Engineering Models and Computational Fluid Dynamics for the OC4-DeepCwind Semi-Submersible

Maija A. Benitz; David P. Schmidt; Matthew A. Lackner; Gordon Stewart; Jason Jonkman; Amy Robertson

Hydrodynamic loads on the platforms of floating offshore wind turbines are often predicted with computer-aided engineering tools that employ Morison’s equation and/or potential-flow theory. This work compares results from one such tool, FAST, the National Renewable Energy Laboratory’s wind turbine computer-aided engineering tool, and the high-fidelity computational fluid dynamics (CFD) package, OpenFOAM, for the OC4-DeepCwind semi-submersible analyzed in the International Energy Agency Wind Task 30 project. Load predictions from HydroDyn, the offshore hydrodynamics module of FAST, are compared with results from OpenFOAM. HydroDyn uses a combination of Morison’s equation and potential-flow theory to predict the hydrodynamic forces on the structure, at a small computational cost compared to CFD. The implications of the assumptions in HydroDyn are evaluated based on this code-to-code comparison.Copyright


Offshore Technology Conference | 2013

Numerical Prediction of Experimentally Observed Behavior of a Scale-Model of an Offshore Wind Turbine Supported by a Tension-Leg Platform

I. Prowell; Amy Robertson; Jason Jonkman; Gordon Stewart; Andrew J. Goupee

Realizing the critical importance the role physical experimental tests play in understanding the dynamics of floating offshore wind turbines, the DeepCwind consortium conducted a one-fiftieth-scale model test program where several floating wind platforms were subjected to a variety of wind and wave loading condition at the Maritime Research Institute Netherlands wave basin. This paper describes the observed behavior of a tension-leg platform, one of three platforms tested, and the systematic effort to predict the measured response with the FAST simulation tool using a model primarily based on consensus geometric and mass properties of the test specimen.


ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering | 2013

Assessing the Importance of Nonlinearities in the Development of a Substructure Model for the Wind Turbine CAE Tool FAST

Rick Damiani; Huimin Song; Amy Robertson; Jason Jonkman

Design and analysis of wind turbines are performed using aero-servo-elastic tools that account for the nonlinear coupling between aerodynamics, controls, and structural response. The NREL-developed computer-aided engineering (CAE) tool FAST also resolves the hydrodynamics of fixed-bottom structures and floating platforms for offshore wind applications. This paper outlines the implementation of a structural-dynamics module (SubDyn) for offshore wind turbines with space-frame substructures into the current FAST framework, and focuses on the initial assessment of the importance of structural nonlinearities. Nonlinear effects include: large displacements, axial shortening due to bending, cross-sectional transverse shear effects, etc.

Collaboration


Dive into the Amy Robertson's collaboration.

Top Co-Authors

Avatar

Jason Jonkman

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Fabian Wendt

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gordon Stewart

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Marco Masciola

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Matthew A. Lackner

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Erin Elizabeth Bachynski

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Rick Damiani

National Renewable Energy Laboratory

View shared research outputs
Top Co-Authors

Avatar

Anders Yde

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge