Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy S. Mauer is active.

Publication


Featured researches published by Amy S. Mauer.


Journal of Biological Chemistry | 2013

C/EBP Homologous Protein-induced Macrophage Apoptosis Protects Mice from Steatohepatitis

Harmeet Malhi; Erin M. Kropp; Vinna F. Clavo; Christina R. Kobrossi; Jaeseok Han; Amy S. Mauer; Jing Yong; Randal J. Kaufman

Background: We hypothesized that C/EBP homologous protein mediates hepatocyte apoptosis in nonalcoholic steatohepatitis. Results: Paradoxically, Chop deletion protects from steatohepatitis by inducing apoptosis in activated macrophages. Conclusion: CHOP-dependent macrophage apoptosis in NASH highlights the cell type-specific complexity of the ER stress response. Significance: Therapeutic manipulation of mediators of ER stress response may have opposite effects in different cell populations; therefore, such studies should be interpreted cautiously. Nonalcoholic fatty liver disease is a heterogeneous disorder characterized by liver steatosis; inflammation and fibrosis are features of the progressive form nonalcoholic steatohepatitis. The endoplasmic reticulum stress response is postulated to play a role in the pathogenesis of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. In particular, C/EBP homologous protein (CHOP) is undetectable under normal conditions but is induced by cellular stress, including endoplasmic reticulum stress. Chop wild type (Chop+/+) and knock-out (Chop−/−) mice were used in these studies to elucidate the role of CHOP in the pathogenesis of fatty liver disease. Paradoxically, Chop−/− mice developed greater liver injury, inflammation, and fibrosis than Chop+/+ mice, with greater macrophage activation. Primary, bone marrow-derived, and peritoneal macrophages from Chop+/+ and Chop−/− were challenged with palmitic acid, an abundant saturated free fatty acid in plasma and liver lipids. Where palmitic acid treatment activated Chop+/+ and Chop−/− macrophages, Chop−/− macrophages were resistant to its lipotoxicity. Chop−/− mice were sensitized to liver injury in a second model of dietary steatohepatitis using the methionine-choline-deficient diet. Analysis of bone marrow chimeras between Chop−/− and Chop+/+ mice demonstrated that Chop in macrophages protects from liver injury and inflammation when fed the methionine-choline-deficient diet. We conclude that Chop deletion has a proinflammatory effect in fatty liver injury apparently due to decreased cell death of activated macrophages, resulting in their net accumulation in the liver. Thus, macrophage CHOP plays a key role in protecting the liver from steatohepatitis likely by limiting macrophage survival during lipotoxicity.


Journal of Biological Chemistry | 2007

Calmodulin-like Protein Increases Filopodia-dependent Cell Motility via Up-regulation of Myosin-10

Richard D. Bennett; Amy S. Mauer; Emanuel E. Strehler

Human calmodulin-like protein (CLP) is an epithelial-specific protein that is expressed during cell differentiation but down-regulated in primary cancers and transformed cell lines. Using stably transfected and inducible HeLa cell lines, we found that CLP expression did not alter the proliferation rate and colony-forming potential of these cells. However, remarkable phenotypic changes were observed in CLP-expressing compared with control cells. Soft agar colonies of CLP-expressing cells had rough boundaries, with peripheral cells migrating away from the colony. Cells expressing CLP displayed a striking increase in the number and length of myosin-10-positive filopodia and showed increased mobility in a wound healing assay. This increase in wound healing capacity was prevented by small interference RNA-mediated down-regulation of myosin-10. Fluorescence microscopy and Western blotting revealed that CLP expression results in up-regulation of its target protein, myosin-10. This up-regulation occurs at the protein level by stabilization of myosin-10. Thus, CLP functions by increasing the stability of myosin-10, leading to enhanced myosin-10 function and a subsequent increase in filopodial dynamics and cell migration. In stratified epithelia, CLP may be required during terminal differentiation to increase myosin-10 function as cells migrate toward the upper layers and establish new adhesive contacts.


Journal of Lipid Research | 2016

Hepatocytes release ceramide-enriched pro-inflammatory extracellular vesicles in an IRE1α-dependent manner

Eiji Kakazu; Amy S. Mauer; Meng Yin; Harmeet Malhi

Nonalcoholic steatohepatitis (NASH) is a lipotoxic disease wherein activation of endoplasmic reticulum (ER) stress response and macrophage-mediated hepatic inflammation are key pathogenic features. However, the lipid mediators linking these two observations remain elusive. We postulated that ER stress-regulated release of pro-inflammatory extracellular vesicles (EVs) from lipotoxic hepatocytes may be this link. EVs were isolated from cell culture supernatants of hepatocytes treated with palmitate (PA) to induce lipotoxic ER stress, characterized by immunofluorescence, Western blotting, electron microscopy, and nanoparticle tracking analysis. Sphingolipids were measured by tandem mass spectrometry. EVs were employed in macrophage chemotaxis assays. PA induced significant EV release. Because PA activates ER stress, we used KO hepatocytes to demonstrate that PA-induced EV release was mediated by inositol requiring enzyme 1α (IRE1α)/X-box binding protein-1. PA-induced EVs were enriched in C16:0 ceramide in an IRE1α-dependent manner, and activated macrophage chemotaxis via formation of sphingosine-1-phosphate (S1P) from C16:0 ceramide. This chemotaxis was blocked by sphingosine kinase inhibitors and S1P receptor inhibitors. Lastly, elevated circulating EVs in experimental and human NASH demonstrated increased C16:0 ceramide. PA induces C16:0 ceramide-enriched EV release in an IRE1α-dependent manner. The ceramide metabolite, S1P, activates macrophage chemotaxis, a potential mechanism for the recruitment of macrophages to the liver under lipotoxic conditions.


The Journal of Comparative Neurology | 2010

Cellular and subcellular localization of the neuron-specific plasma membrane calcium ATPase PMCA1a in the rat brain

Katharine Kenyon; Eric A. Bushong; Amy S. Mauer; Emanuel E. Strehler; Richard J. Weinberg; Alain Burette

Regulation of intracellular calcium is crucial both for proper neuronal function and survival. By coupling ATP hydrolysis with Ca2+ extrusion from the cell, the plasma membrane calcium‐dependent ATPases (PMCAs) play an essential role in controlling intracellular calcium levels in neurons. In contrast to PMCA2 and PMCA3, which are expressed in significant levels only in the brain and a few other tissues, PMCA1 is ubiquitously distributed, and is thus widely believed to play a “housekeeping” function in mammalian cells. Whereas the PMCA1b splice variant is predominant in most tissues, an alternative variant, PMCA1a, is the major form of PMCA1 in the adult brain. Here, we use immunohistochemistry to analyze the cellular and subcellular distribution of PMCA1a in the brain. We show that PMCA1a is not ubiquitously expressed, but rather is confined to neurons, where it concentrates in the plasma membrane of somata, dendrites, and spines. Thus, rather than serving a general housekeeping function, our data suggest that PMCA1a is a calcium pump specialized for neurons, where it may contribute to the modulation of somatic and dendritic Ca2+ transients. J. Comp. Neurol. 518:3169–3183, 2010.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2017

Inhibition of sphingosine 1-phosphate signaling ameliorates murine nonalcoholic steatohepatitis

Amy S. Mauer; Petra Hirsova; Jessica L. Maiers; Vijay H. Shah; Harmeet Malhi

Nonalcoholic steatohepatitis (NASH) is a lipotoxic disorder, wherein proinflammatory lipids, such as ceramide and its derivative sphingosine 1-phosphate (S1P), contribute to macrophage-associated liver inflammation. For example, we have previously demonstrated a role for S1P in steatotic hepatocyte-derived S1P-enriched extracellular vesicles in macrophage chemotaxis in vitro. Therefore, we hypothesized that FTY720, an S1P antagonist, would ameliorate NASH by inhibiting proinflammatory monocyte chemotaxis. To test our hypothesis, NASH was established in C57BL/6 male mice by feeding a diet high in fructose, saturated fat, and cholesterol for 22 wk. Then mice received daily intraperitoneal injections of FTY720 for 2 wk before analysis of liver injury, inflammation, and fibrosis. FTY720-treated mice with NASH demonstrated improved liver histology with a significant reduction in hepatocyte ballooning and inflammatory foci. Hepatomegaly was reversed, and liver triglycerides were reduced following FTY720 administration to mice with NASH. Correspondingly, serum ALT levels, hepatic inflammatory macrophage accumulation, and the expression of Ly6C in recruited myeloid cells was reduced in FTY720-treated mice. Hepatic collagen accumulation and expression of α-smooth muscle actin were significantly lowered as well. Body composition, energy consumption and utilization, and hepatic sphingolipid composition remained unchanged following FTY720 administration. FTY720 ameliorates murine nonalcoholic steatohepatitis. Reduction in liver injury and inflammation is associated with a reduction in hepatic macrophage accumulation, likely due to dampened recruitment of circulating myeloid cells into the liver. Nonalcoholic steatohepatitis may be a novel indication for the therapeutic use of FTY720.NEW & NOTEWORTHY There are no approved pharmacologic therapies for nonalcoholic steatohepatitis (NASH), the leading cause of chronic liver disease worldwide. This study describes the use of FTY720, a novel small molecule, for the amelioration of NASH in a mouse model. We demonstrate that 2-wk administration of FTY720 to mice with NASH led to a reduction in liver injury, inflammation, and fibrosis. These data provide a preclinical rationale for studying this drug in human NASH.


PLOS ONE | 2014

Mmu-miR-615-3p Regulates Lipoapoptosis by Inhibiting C/EBP Homologous Protein

Yasuhiro Miyamoto; Amy S. Mauer; Swarup Kumar; Justin L. Mott; Harmeet Malhi

Lipoapoptosis occurring due to an excess of saturated free fatty acids such as palmitate is a key pathogenic event in the initiation of nonalcoholic fatty liver disease. Palmitate loading of cells activates the endoplasmic reticulum stress response, including induction of the proapoptotic transcription factor C/EBP homologous protein (CHOP). Furthermore, the loss of microRNAs is implicated in regulating apoptosis under conditions of endoplasmic reticulum (ER) stress. The aim of this study was to identify specific microRNAs regulating CHOP expression during palmitate-induced ER stress. Five microRNAs were repressed under palmitate-induced endoplasmic reticulum stress conditions in hepatocyte cell lines (miR-92b-3p, miR-328-3p, miR-484, miR-574-5p, and miR-615-3p). We identified miR-615-3p as a candidate microRNA which was repressed by palmitate treatment and regulated CHOP protein expression, by RNA sequencing and in silico analyses, respectively. There is a single miR-615-3p binding site in the 3′untranslated region (UTR) of the Chop transcript. We characterized this as a functional binding site using a reporter gene-based assay. Augmentation of miR-615-3p levels, using a precursor molecule, repressed CHOP expression; and under these conditions palmitate- or tunicamycin-induced cell death were significantly reduced. Our results suggest that palmitate-induced apoptosis requires maximal expression of CHOP which is achieved via the downregulation of its repressive microRNA, miR-615-3p. We speculate that enhancement of miR-615-3p levels may be of therapeutic benefit by inhibiting palmitate-induced hepatocyte lipoapoptosis.


Journal of Investigative Dermatology | 2009

Calmodulin-Like Protein Upregulates Myosin-10 in Human Keratinocytes and Is Regulated during Epidermal Wound Healing In Vivo

Richard D. Bennett; Amy S. Mauer; Mark R. Pittelkow; Emanuel E. Strehler

Epidermal wound healing is required for normal skin barrier function. Cell motility is a key factor in the ability of keratinocytes to heal epithelial damage. Calmodulin-like protein (CLP) is an epithelial-specific Ca(2+)-binding protein that is regulated during terminal keratinocyte differentiation. CLP is a specific light chain of unconventional myosin-10 (Myo10) and its expression increases filopodial length, filopodial number, and Myo10-dependent cell motility in vitro. However, the effects of CLP expression on keratinocyte motility are unknown. Here we used cultured human keratinocytes to study the role of CLP in regulating Myo10 and the effects of Myo10 and CLP on cell migration. CLP and Myo10 expression were correlated in vitro and required for keratinocyte motility in wound-healing assays. We examined the localization of CLP in wounded skin by immunohistochemistry and found an upregulation and peripheral localization of CLP in the basal and suprabasal cells adjacent to and immediately over the wound bed in vivo. The results suggest that increased CLP expression and CLP-mediated Myo10 function are important for skin differentiation and wound reepithelialization.


Cell Calcium | 2012

Plasma membrane calcium pump (PMCA) isoform 4 is targeted to the apical membrane by the w-splice insert from PMCA2

Géza Antalffy; Amy S. Mauer; Katalin Pászty; Luca Hegedus; Rita Padányi; Ágnes Enyedi; Emanuel E. Strehler

Local Ca(2+) signaling requires proper targeting of the Ca(2+) signaling toolkit to specific cellular locales. Different isoforms of the plasma membrane Ca(2+) pump (PMCA) are responsible for Ca(2+) extrusion at the apical and basolateral membrane of polarized epithelial cells, but the mechanisms and signals for differential targeting of the PMCAs are not well understood. Recent work demonstrated that the alternatively spliced w-insert in PMCA2 directs this pump to the apical membrane. We now show that inserting the w-insert into the corresponding location of the PMCA4 isoform confers apical targeting to this normally basolateral pump. Mutation of a di-leucine motif in the C-tail thought to be important for basolateral targeting did not enhance apical localization of the chimeric PMCA4(2w)/b. In contrast, replacing the C-terminal Val residue by Leu to optimize the PDZ ligand site for interaction with the scaffolding protein NHERF2 enhanced the apical localization of PMCA4(2w)/b, but not of PMCA4x/b. Functional studies showed that both apical PMCA4(2w)/b and basolateral PMCA4x/b handled ATP-induced Ca(2+) signals with similar kinetics, suggesting that isoform-specific functional characteristics are retained irrespective of membrane targeting. Our results demonstrate that the alternatively spliced w-insert provides autonomous apical targeting information in the PMCA without altering its functional characteristics.


FEBS Letters | 2008

Interaction with the IQ3 motif of myosin-10 is required for calmodulin-like protein-dependent filopodial extension

Richard D. Bennett; Ariel J. Caride; Amy S. Mauer; Emanuel E. Strehler

MINT‐6595901: GST‐IQ3 Myo10 (uniprotkb:Q9HD67) binds (MI:0407) to CLP (uniprotkb:P27482) by pull down (MI:0096) MINT‐6596000: CLP (uniprotkb:P27482) and GST‐IQ3 Myo10 (uniprotkb:Q9HD67) bind (MI:0407) by classical fluorescence spectroscopy (MI:0017) MINT‐6596013: CaM (uniprotkb:P62158) and GST‐IQ3 Myo10 (uniprotkb:Q9HD67) bind (MI:0407) by classical fluorescence spectroscopy (MI:0017) MINT‐6595938:GST‐IQ3 Myo10 (uniprotkb:Q9HD67) binds (MI:0407) to CaM (uniprotkb:P62158) by pull down (MI:0096)


Journal of Biological Chemistry | 2018

StAR-related lipid transfer domain 11 (STARD11)-mediated ceramide transport mediates extracellular vesicle biogenesis

Masanori Fukushima; Debanjali Dasgupta; Amy S. Mauer; Eiji Kakazu; Kazuhiko Nakao; Harmeet Malhi

Extracellular vesicles are important carriers of cellular materials and have critical roles in cell-to-cell communication in both health and disease. Ceramides are implicated in extracellular vesicle biogenesis, yet the cellular machinery that mediates the formation of ceramide-enriched extracellular vesicles remains unknown. We demonstrate here that the ceramide transport protein StAR-related lipid transfer domain 11 (STARD11) mediates the release of palmitate-stimulated extracellular vesicles having features consistent with exosomes. Using palmitate as a model of lipotoxic diseases and as a substrate for ceramide biosynthesis in human and murine liver cell lines and primary mouse hepatocytes, we found that STARD11-deficient cells release fewer extracellular vesicles. Moreover, STARD11 reciprocally regulated exosome ceramide enrichment and cellular ceramide depletion. We further observed that in STARD11 knockout cells intracellular ceramide accumulates and that this apparent inability to transfer cellular ceramide into extracellular vesicles reduces cellular viability. Using endogenous markers, we uncovered structural and functional colocalization of the endoplasmic reticulum (ER), STARD11, and multivesicular bodies. This colocalization increased following palmitate treatment, suggesting a functional association that may mediate ceramide trafficking from the ER to the multivesicular body. However, the size and number of multivesicular bodies were comparable in WT and STARD11-knockout cells. In conclusion, we propose a model of how STARD11 mediates ceramide trafficking in palmitate-treated cells and stimulates exosome biogenesis.

Collaboration


Dive into the Amy S. Mauer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge