Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy S. Yee is active.

Publication


Featured researches published by Amy S. Yee.


Molecular and Cellular Biology | 1994

Cyclin A/CDK2 binds directly to E2F-1 and inhibits the DNA-binding activity of E2F-1/DP-1 by phosphorylation

Min Xu; Kelly Ann Sheppard; Cheng Yuan Peng; Amy S. Yee; Helen Piwnica-Worms

E2F-1, a member of the E2F transcription factor family, contributes to the regulation of the G1-to-S phase transition in higher eukaryotic cells. E2F-1 forms a heterodimer with DP-1 and binds to several cell cycle regulatory proteins, including the retinoblastoma family (RB, p107, p130) and cyclin A/CDK2 complexes. We have analyzed E2F-1 phosphorylation and its interaction with cyclin A/CDK2 complexes both in vivo and in vitro. In vitro, E2F-1 formed a stable complex with cyclin A/CDK2 but not with either subunit alone. DP-1 did not interact with cyclin A, CDK2, or the cyclin A/CDK2 complex. While the complex of cyclin A/CDK2 was required for stable complex formation with E2F-1, the kinase-active form of CDK2 was not required. However, E2F-1 was phosphorylated by cyclin A/CDK2 in vitro and was phosphorylated in vivo in HeLa cells. Two-dimensional tryptic phosphopeptide mapping studies demonstrated an overlap in the phosphopeptides derived from E2F-1 labeled in vitro and in vivo, indicating that cyclin A/CDK2 may be responsible for the majority of E2F-1 phosphorylation in vivo. Furthermore, an active DNA-binding complex could be reconstituted from purified E2F-1/DP-1 and cyclin A/CDK2. Binding studies conducted both in vitro and in vivo demonstrated that the cyclin A/CDK2-binding region resided within the N-terminal 124 amino acids of E2F-1. Because the stable association of E2F-1 with cyclin A/CDK2 in vitro and in vivo did not require a DP-1- or RB-binding domain and because the interactions could be reconstituted from purified components in vitro, we conclude that the interactions between cyclin A/CDK2 and E2F-1 are direct. Finally, we report that the DNA-binding activity of the E2F-1/DP-1 complex is inhibited following phosphorylation by cyclin A/CDK2.


Journal of Biological Chemistry | 2006

Suppression of Wnt Signaling by the Green Tea Compound (–)-Epigallocatechin 3-Gallate (EGCG) in Invasive Breast Cancer Cells REQUIREMENT OF THE TRANSCRIPTIONAL REPRESSOR HBP1

Jiyoung Kim; Xiaowei Zhang; Kimberly M. Rieger-Christ; Ian C. Summerhayes; David E. Wazer; K. Eric Paulson; Amy S. Yee

Genetic and biochemical de-regulation of Wnt signaling is correlated with breast and other cancers. Our goal was to identify compounds that block Wnt signaling as a first step toward investigating new strategies for suppression of invasive and other breast cancers. In a limited phytonutrient screen, EGCG ((–)-epigallocatechin 3-gallate), the major phytochemical in green tea, emerged as an intriguing candidate. Epidemiological studies have associated green tea consumption with reduced recurrence of invasive and other breast cancers. Wnt signaling was inhibited by EGCG in a dose-dependent manner in breast cancer cells. The apparent mechanism targeted the HBP1 transcriptional repressor, which we had previously characterized as a suppressor of Wnt signaling. EGCG treatment induced HBP1 transcriptional repressor levels through an increase in HBP1 mRNA stability, but not transcriptional initiation. To test functionality, DNA-based short hairpin RNA (shRNA) was used to knockdown the endogenous HBP1 gene. Consistently, the HBP1 knockdown lines had reduced sensitivity to EGCG in the suppression of Wnt signaling and of a target gene (c-MYC). Because our ongoing studies clinically link abrogation of HBP1 with invasive breast cancer, we tested if EGCG also regulated biological functions associated with de-regulated Wnt signaling and with invasive breast cancer. EGCG reduced both breast cancer cell tumorigenic proliferation and invasiveness in an HBP1-dependent manner. Together, the emerging mechanism is that EGCG blocks Wnt signaling by inducing the HBP1 transcriptional repressor and inhibits aspects of invasive breast cancer. These studies provide a framework for considering future studies in breast cancer treatment and prevention.


The EMBO Journal | 2001

Negative regulation of the Wnt–β‐catenin pathway by the transcriptional repressor HBP1

Ellen Sampson; Zaffar K. Haque; Man-Ching Ku; Sergei G. Tevosian; Chris Albanese; Richard G. Pestell; K. Eric Paulson; Amy S. Yee

In certain cancers, constitutive Wnt signaling results from mutation in one or more pathway components. The result is the accumulation and nuclear localization of β‐catenin, which interacts with the lymphoid enhancer factor‐1 (LEF)/T‐cell factor (TCF) family of HMG‐box transcription factors, which activate important growth regulatory genes, including cyclin D1 and c‐myc. As exemplified by APC and axin, the negative regulation of β‐catenin is important for tumor suppression. Another potential mode of negative regulation is transcriptional repression of cyclin D1 and other Wnt target genes. In mammals, the transcriptional repressors in the Wnt pathway are not well defined. We have previously identified HBP1 as an HMG‐box repressor and a cell cycle inhibitor. Here, we show that HBP1 is a repressor of the cyclin D1 gene and inhibits the Wnt signaling pathway. The inhibition of Wnt signaling and growth requires a common domain of HBP1. The apparent mechanism is an inhibition of TCF/LEF DNA binding through a physical interaction with HBP1. These data suggest that the suppression of Wnt signaling by HBP1 may be a mechanism to prevent inappropriate proliferation.


Molecular and Cellular Biology | 1999

Functions of Cyclin A1 in the Cell Cycle and Its Interactions with Transcription Factor E2F-1 and the Rb Family of Proteins

Rong Yang; Carsten Müller; Vong Huynh; Yuen K. Fung; Amy S. Yee; H. Phillip Koeffler

ABSTRACT Human cyclin A1, a newly discovered cyclin, is expressed in testis and is thought to function in the meiotic cell cycle. Here, we show that the expression of human cyclin A1 and cyclin A1-associated kinase activities was regulated during the mitotic cell cycle. In the osteosarcoma cell line MG63, cyclin A1 mRNA and protein were present at very low levels in cells at the G0 phase. They increased during the progression of the cell cycle and reached the highest levels in the S and G2/M phases. Furthermore, the cyclin A1-associated histone H1 kinase activity peaked at the G2/M phase. We report that cyclin A1 could bind to important cell cycle regulators: the Rb family of proteins, the transcription factor E2F-1, and the p21 family of proteins. The in vitro interaction of cyclin A1 with E2F-1 was greatly enhanced when cyclin A1 was complexed with CDK2. Associations of cyclin A1 with Rb and E2F-1 were observed in vivo in several cell lines. When cyclin A1 was coexpressed with CDK2 in sf9 insect cells, the CDK2-cyclin A1 complex had kinase activities for histone H1, E2F-1, and the Rb family of proteins. Our results suggest that the Rb family of proteins and E2F-1 may be important targets for phosphorylation by the cyclin A1-associated kinase. Cyclin A1 may function in the mitotic cell cycle in certain cells.


Molecular and Cellular Biology | 2004

Transcription Factors Pax6 and AP-2α Interact To Coordinate Corneal Epithelial Repair by Controlling Expression of Matrix Metalloproteinase Gelatinase B

Jm Sivak; Judith A. West-Mays; Amy S. Yee; Trevor Williams; M. Elizabeth Fini

ABSTRACT Pax6 is a paired box containing transcription factor that resides at the top of a genetic hierarchy controlling eye development. It continues to be expressed in tissues of the adult eye, but its role in this capacity is unclear. Pax6 is present in the adult corneal epithelium, and we showed that the amount of Pax6 is increased at the migrating front as the epithelium resurfaces the cornea after injury (J. M. Sivak, R. Mohan, W. B. Rinehart, P. X. Xu, R. L. Maas, and M. E. Fini, Dev. Biol. 222:41-54, 2000). We also showed that Pax6 controls activity of the transcriptional promoter for the matrix metalloproteinase, gelatinase B (gelB; MMP-9) in cell culture transfection studies. gelB expression is turned on at the migrating epithelial front in the cornea, and it coordinates and effects aspects of epithelial regeneration (R. Mohan, S. K. Chintala, J. C. Jung, W. V. Villar, F. McCabe, L. A. Russo, Y. Lee, B. E. McCarthy, K. R. Wollenberg, J. V. Jester, M. Wang, H. G. Welgus, J. M. Shipley, R. M. Senior, and M. E. Fini, J. Biol. Chem. 277:2065-2072). We define here two positively acting Pax6 response elements in the gelB promoter. Pax6 binds directly to one of these sites through the paired DNA-binding domain. It binds the second site indirectly by interaction with AP-2α, a transcription factor that also exerts control over eye development. Pax6 control of gelB expression was examined in vivo by using a corneal reepithelialization model in mice heterozygous for a Pax6 paired-domain mutation (Sey+/−). A reduced Pax6 dosage in these mice resulted in a loss of gelB expression at the migrating epithelial front. This effect was correlated with an increase in inflammation and the rate of reepithelialization, a finding consistent with the phenotype of gelB knockout mice. Together, these data indicate that Pax6 controls activity of the gelB promoter through cooperative interactions with AP-2α and support an active role for Pax6 in maintenance and repair of the adult corneal epithelium.


Molecular and Cellular Biology | 1995

Multiple change in E2F function and regulation occur upon muscle differentiation.

E K Shin; A Shin; C Paulding; Brian Schaffhausen; Amy S. Yee

We have examined regulation of the E2F transcription factor during differentiation of muscle cells. E2F regulates many genes involved in growth control and is also the target of regulation by diverse cellular signals, including the RB family of growth suppressors (e.g., the retinoblastoma protein [RB], p107, and p130). The following aspects of E2F function and regulation during muscle differentiation were investigated: (i) protein-protein interactions, (ii) protein levels, (iii) phosphorylation of the E2F protein, and (iv) transcriptional activity. A distinct E2F complex was present in differentiated cells but not in undifferentiated cells. The p130 protein was a prominent component of the E2F complex associated with differentiation. In contrast, in undifferentiated cells, the p107 protein was the prominent component in one of three E2F complexes. In addition, use of a differentiation-defective muscle line provided genetic and biochemical evidence that quiescence and differentiation are separable events. Exclusive formation of the E2F-p130 complex did not occur in this differentiation-defective line; however, E2F complexes diagnostic of quiescence were readily apparent. Thus, sole formation of the E2F-p130 complex is a necessary event in terminal differentiation. Other changes in E2F function and regulation upon differentiation include decreased phosphorylation and increased repression by E2F. These observations suggest that the regulation of E2F function during terminal differentiation may proceed through differential interaction within the RB family and/or phosphorylation.


Molecular and Cellular Biology | 1998

Regulation of Differentiation by HBP1, a Target of the Retinoblastoma Protein

Heather H. Shih; Sergei G. Tevosian; Amy S. Yee

ABSTRACT Differentiation is a coordinated process of irreversible cell cycle exit and tissue-specific gene expression. To probe the functions of the retinoblastoma protein (RB) family in cell differentiation, we isolated HBP1 as a specific target of RB and p130. Our previous work showed that HBP1 was a transcriptional repressor and a cell cycle inhibitor. The induction of HBP1, RB, and p130 upon differentiation in the muscle C2C12 cells suggested a coordinated role. Here we report that the expression of HBP1 unexpectedly blocked muscle cell differentiation without interfering with cell cycle exit. Moreover, the expression of MyoD and myogenin, but not Myf5, was inhibited in HBP1-expressing cells. HBP1 inhibited transcriptional activation by the MyoD family members. The inhibition of MyoD family function by HBP1 required binding to RB and/or p130. Since Myf5 might function upstream of MyoD, our data suggested that HBP1 probably blocked differentiation by disrupting Myf5 function, thus preventing expression of MyoD and myogenin. Consistent with this, the expression of each MyoD family member could reverse the inhibition of differentiation by HBP1. Further investigation implicated the relative ratio of RB to HBP1 as a determinant of whether cell cycle exit or full differentiation occurred. At a low RB/HBP1 ratio cell cycle exit occurred but there was no tissue-specific gene expression. At elevated RB/HBP1 ratios full differentiation occurred. Similar changes in the RB/HBP1 ratio have been observed in normal C2 differentiation. Thus, we postulate that the relative ratio of RB to HBP1 may be one signal for activation of the MyoD family. We propose a model in which a checkpoint of positive and negative regulation may coordinate cell cycle exit with MyoD family activation to give fidelity and progression in differentiation.


Oncogene | 1998

Activation and repression of p21(WAF1/CIP1) transcription by RB binding proteins

Andrei L. Gartel; Eugene Goufman; Sergei G. Tevosian; Heather H. Shih; Amy S. Yee; Angela L. Tyner

The Cdk inhibitor p21WAF1/CIP1 is a negative regulator of the cell cycle, although its expression is induced by a number of mitogens that promote cell proliferation. We have found that E2F1 and E2F3, transcription factors that activate genes required for cell cycle progression, are strong activators of the p21 promoter. In contrast, HBP1 (HMG-box protein-1), a novel retinoblastoma protein-binding protein, can repress the p21 promoter and inhibit induction of p21 expression by E2F. Both E2Fs and HBP1 regulate p21 transcription through cis-acting elements located between nucleotides −119 to +16 of the p21 promoter and the DNA binding domains of each of these proteins are required for activity. Sequences between −119 and −60 basepairs containing four Sp1 consensus elements and two noncanonical E2F binding sites are of major importance for E2F activation, although E2F1 and E2F3 differ in the extent of their ability to activate expression when this segment is deleted. The opposing effects of E2Fs and HBP1 on p21 promoter activity suggest that interplay between these factors may determine the level of p21 transcription in vivo.


British Journal of Cancer | 2005

Restoration of plakoglobin expression in bladder carcinoma cell lines suppresses cell migration and tumorigenic potential

Kimberly M. Rieger-Christ; L Ng; Robert S. Hanley; O Durrani; H Ma; Amy S. Yee; John A. Libertino; Summerhayes Ic

The reduction or loss of plakoglobin expression in late-stage bladder cancer has been correlated with poor survival where upregulation of this catenin member by histone deacetylase inhibitors has been shown to accompany tumour suppression in an in vivo model. In this study, we directly addressed the question of the role of plakoglobin in bladder tumorigenesis following restoration, or knockdown of expression in bladder carcinoma cell lines. Restoration of plakoglobin expression resulted in a reduction in migration and suppression of tumorigenic potential in vivo. Immunocytochemistry revealed cytoplasmic and membranous localisation of plakoglobin in transfectants with <1% of cells displaying detectable nuclear localisation of plakoglobin. siRNA knockdown experiments targeting plakoglobin, revealed enhanced migration in all cell lines in the presence and absence of E-cadherin expression. In bladder cell lines expressing low levels of plakoglobin and desmoglein-2, elevated levels of desmoglein-2 were detected following restoration of plakoglobin expression in transfected cell lines. Analysis of wnt signalling revealed no activation event associated with plakoglobin expression in the bladder model. These results show that plakoglobin acts as a tumour suppressor gene in bladder carcinoma cells and the silencing of plakoglobin gene expression in late-stage bladder cancer is a primary event in tumour progression.


Molecular and Cellular Biology | 2006

The HBP1 Transcriptional Repressor Participates in RAS-Induced Premature Senescence

Xiaowei Zhang; Jiyoung Kim; Robin Ruthazer; Michael A. McDevitt; David E. Wazer; K. Eric Paulson; Amy S. Yee

ABSTRACT Oncogene-mediated premature senescence has emerged as a potential tumor-suppressive mechanism in early cancer transitions. Previous work shows that RAS and p38 MAPK participate in premature senescence, but transcriptional effectors have not been identified. Here, we demonstrate that the HBP1 transcriptional repressor participates in RAS- and p38 MAPK-induced premature senescence. In cell lines, we had previously isolated HBP1 as a retinoblastoma (RB) target but have determined that it functions as a proliferation regulator by inhibiting oncogenic pathways as a transcriptional repressor. In primary cells, the results indicate that HBP1 is a necessary component of premature senescence by RAS and p38 MAPK. Similarly, a knockdown of WIP1 (a p38 MAPK phosphatase) induced premature senescence that also required HBP1. Furthermore, HBP1 requires regulation by RB, in which few transcriptional regulators for premature senescence have been shown. Together, the data suggest a model in which RAS and p38 MAPK signaling engage HBP1 and RB to trigger premature senescence. As an initial step toward clinical relevance, a bioinformatics approach shows that the relative expression levels of HBP1 and WIP1 correlated with decreased relapse-free survival in breast cancer patients. Together, these studies highlight p38 MAPK, HBP1, and RB as important components for a premature-senescence pathway with possible clinical relevance to breast cancer.

Collaboration


Dive into the Amy S. Yee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiyoung Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael A. McDevitt

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge