Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy Tsurumi is active.

Publication


Featured researches published by Amy Tsurumi.


PLOS Genetics | 2011

STAT is an essential activator of the zygotic genome in the early Drosophila embryo.

Amy Tsurumi; Fan Xia; Jinghong Li; Kimberly Larson; Russell LaFrance; Willis X. Li

In many organisms, transcription of the zygotic genome begins during the maternal-to-zygotic transition (MZT), which is characterized by a dramatic increase in global transcriptional activities and coincides with embryonic stem cell differentiation. In Drosophila, it has been shown that maternal morphogen gradients and ubiquitously distributed general transcription factors may cooperate to upregulate zygotic genes that are essential for pattern formation in the early embryo. Here, we show that Drosophila STAT (STAT92E) functions as a general transcription factor that, together with the transcription factor Zelda, induces transcription of a large number of early-transcribed zygotic genes during the MZT. STAT92E is present in the early embryo as a maternal product and is active around the MZT. DNA–binding motifs for STAT and Zelda are highly enriched in promoters of early zygotic genes but not in housekeeping genes. Loss of Stat92E in the early embryo, similarly to loss of zelda, preferentially down-regulates early zygotic genes important for pattern formation. We further show that STAT92E and Zelda synergistically regulate transcription. We conclude that STAT92E, in conjunction with Zelda, plays an important role in transcription of the zygotic genome at the onset of embryonic development.


PLOS Genetics | 2012

Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis

Kimberly Larson; Shian Jang Yan; Amy Tsurumi; Jacqueline Liu; Jun Zhou; Kriti Gaur; Dongdong Guo; Thomas H. Eickbush; Willis X. Li

Organismal aging is influenced by a multitude of intrinsic and extrinsic factors, and heterochromatin loss has been proposed to be one of the causes of aging. However, the role of heterochromatin in animal aging has been controversial. Here we show that heterochromatin formation prolongs lifespan and controls ribosomal RNA synthesis in Drosophila. Animals with decreased heterochromatin levels exhibit a dramatic shortening of lifespan, whereas increasing heterochromatin prolongs lifespan. The changes in lifespan are associated with changes in muscle integrity. Furthermore, we show that heterochromatin levels decrease with normal aging and that heterochromatin formation is essential for silencing rRNA transcription. Loss of epigenetic silencing and loss of stability of the rDNA locus have previously been implicated in aging of yeast. Taken together, these results suggest that epigenetic preservation of genome stability, especially at the rDNA locus, and repression of unnecessary rRNA synthesis, might be an evolutionarily conserved mechanism for prolonging lifespan.


Epigenetics | 2012

Global heterochromatin loss: a unifying theory of aging?

Amy Tsurumi; Willis X. Li

The aging field is replete with theories. Over the past years, many distinct, yet overlapping mechanisms have been proposed to explain organismal aging. These include free radicals, loss of heterochromatin, genetically programmed senescence, telomere shortening, genomic instability, nutritional intake and growth signaling, to name a few. The objective of this Point-of-View is to highlight recent progress on the “loss of heterochromatin” model of aging and to propose that epigenetic changes contributing to global heterochromatin loss may underlie the various cellular processes associated with aging.


PLOS ONE | 2013

A Quorum Sensing Small Volatile Molecule Promotes Antibiotic Tolerance in Bacteria

Yok-Ai Que; Ronen Hazan; Benjamin Strobel; Damien Maura; Jianxin He; Meenu Kesarwani; Panagiotis Panopoulos; Amy Tsurumi; Marlyse Giddey; Julie Wilhelmy; Michael Mindrinos; Laurence G. Rahme

Bacteria can be refractory to antibiotics due to a sub-population of dormant cells, called persisters that are highly tolerant to antibiotic exposure. The low frequency and transience of the antibiotic tolerant “persister” trait has complicated elucidation of the mechanism that controls antibiotic tolerance. In this study, we show that 2’ Amino-acetophenone (2-AA), a poorly studied but diagnostically important small, volatile molecule produced by the recalcitrant gram-negative human pathogen Pseudomonas aeruginosa, promotes antibiotic tolerance in response to quorum-sensing (QS) signaling. Our results show that 2-AA mediated persister cell accumulation occurs via alteration of the expression of genes involved in the translational capacity of the cell, including almost all ribosomal protein genes and other translation-related factors. That 2-AA promotes persisters formation also in other emerging multi-drug resistant pathogens, including the non 2-AA producer Acinetobacter baumannii implies that 2-AA may play an important role in the ability of gram-negative bacteria to tolerate antibiotic treatments in polymicrobial infections. Given that the synthesis, excretion and uptake of QS small molecules is a common hallmark of prokaryotes, together with the fact that the translational machinery is highly conserved, we posit that modulation of the translational capacity of the cell via QS molecules, may be a general, widely distributed mechanism that promotes antibiotic tolerance among prokaryotes.


Scientific Reports | 2013

Drosophila Kdm4 demethylases in histone H3 lysine 9 demethylation and ecdysteroid signaling

Amy Tsurumi; Pranabanada Dutta; Shian Jang Yan; Robin Sheng; Willis X. Li

The dynamic regulation of chromatin structure by histone post-translational modification is an essential regulatory mechanism that controls global gene transcription. The Kdm4 family of H3K9me2,3 and H3K36me2,3 dual specific histone demethylases has been implicated in development and tumorigenesis. Here we show that Drosophila Kdm4A and Kdm4B are together essential for mediating ecdysteroid hormone signaling during larval development. Loss of Kdm4 genes leads to globally elevated levels of the heterochromatin marker H3K9me2,3 and impedes transcriptional activation of ecdysone response genes, resulting in developmental arrest. We further show that Kdm4A interacts with the Ecdysone Receptor (EcR) and colocalizes with EcR at its target gene promoter. Our studies suggest that Kdm4A may function as a transcriptional co-activator by removing the repressive histone mark H3K9me2,3 from cognate promoters.


PLOS Biology | 2008

Raf activation is regulated by tyrosine 510 phosphorylation in Drosophila.

Fan Xia; Jinghong Li; Gavin W. Hickey; Amy Tsurumi; Kimberly Larson; Dongdong Guo; Shian Jang Yan; Louis Silver-Morse; Willis X. Li

The proto-oncoprotein Raf is pivotal for mitogen-activated protein kinase (MAPK) signaling, and its aberrant activation has been implicated in multiple human cancers. However, the precise molecular mechanism of Raf activation, especially for B-Raf, remains unresolved. By genetic and biochemical studies, we demonstrate that phosphorylation of tyrosine 510 is essential for activation of Drosophila Raf (Draf), which is an ortholog of mammalian B-Raf. Y510 of Draf is phosphorylated by the c-src homolog Src64B. Acidic substitution of Y510 promotes and phenylalanine substitution impairs Draf activation without affecting its enzymatic activity, suggesting that Y510 plays a purely regulatory role. We further show that Y510 regulates Draf activation by affecting the autoinhibitory interaction between the N- and C-terminal fragments of the protein. Finally, we show that Src64B is required for Draf activation in several developmental processes. Together, these results suggest a novel mechanism of Raf activation via Src-mediated tyrosine phosphorylation. Since Y510 is a conserved residue in the kinase domain of all Raf proteins, this mechanism is likely evolutionarily conserved.


Annals of Surgery | 2015

Prediction of multiple infections after severe burn trauma: a prospective cohort study.

Shuangchun Yan; Amy Tsurumi; Yok-Ai Que; Colleen M. Ryan; Arunava Bandyopadhaya; Alexander A. Morgan; Patrick Flaherty; Ronald G. Tompkins; Laurence G. Rahme

OBJECTIVE To develop predictive models for early triage of burn patients based on hypersusceptibility to repeated infections. BACKGROUND Infection remains a major cause of mortality and morbidity after severe trauma, demanding new strategies to combat infections. Models for infection prediction are lacking. METHODS Secondary analysis of 459 burn patients (≥16 years old) with 20% or more total body surface area burns recruited from 6 US burn centers. We compared blood transcriptomes with a 180-hour cutoff on the injury-to-transcriptome interval of 47 patients (≤1 infection episode) to those of 66 hypersusceptible patients [multiple (≥2) infection episodes (MIE)]. We used LASSO regression to select biomarkers and multivariate logistic regression to built models, accuracy of which were assessed by area under receiver operating characteristic curve (AUROC) and cross-validation. RESULTS Three predictive models were developed using covariates of (1) clinical characteristics; (2) expression profiles of 14 genomic probes; (3) combining (1) and (2). The genomic and clinical models were highly predictive of MIE status [AUROCGenomic = 0.946 (95% CI: 0.906-0.986); AUROCClinical = 0.864 (CI: 0.794-0.933); AUROCGenomic/AUROCClinical P = 0.044]. Combined model has an increased AUROCCombined of 0.967 (CI: 0.940-0.993) compared with the individual models (AUROCCombined/AUROCClinical P = 0.0069). Hypersusceptible patients show early alterations in immune-related signaling pathways, epigenetic modulation, and chromatin remodeling. CONCLUSIONS Early triage of burn patients more susceptible to infections can be made using clinical characteristics and/or genomic signatures. Genomic signature suggests new insights into the pathophysiology of hypersusceptibility to infection may lead to novel potential therapeutic or prophylactic targets.


Biochemical Journal | 2007

Dsk1p kinase phosphorylates SR proteins and regulates their cellular localization in fission yeast.

Zhaohua Tang; Amy Tsurumi; Sarah Alaei; Christopher Wilson; Cathleen Chiu; Jessica Oya; Benson Ngo

Evolutionarily conserved SR proteins (serine/arginine-rich proteins) are important factors for alternative splicing and their activity is modulated by SRPKs (SR protein-specific kinases). We previously identified Dsk1p (dis1-suppressing protein kinase) as the orthologue of human SRPK1 in fission yeast. In addition to its similarity of gene structure to higher eukaryotes, fission yeast Schizosaccharomyces pombe is a unicellular eukaryotic organism in which alternative splicing takes place. In the present study, we have revealed for the first time that SR proteins, Srp1p and Srp2p, are the in vivo substrates of Dsk1p in S. pombe. Moreover, the cellular localization of the SR proteins and Prp2p splicing factor is dependent on dsk1(+): Dsk1p is required for the efficient nuclear localization of Srp2p and Prp2p, while it promotes the cytoplasmic distribution of Srp1p, thereby differentially influencing the destinations of these proteins in the cell. The present study offers the first biochemical and genetic evidence for the in vivo targets of the SRPK1 orthologue, Dsk1p, in S. pombe and the significant correlation between Dsk1p-mediated phosphorylation and the cellular localization of the SR proteins, providing information about the physiological functions of Dsk1p. Furthermore, the results demonstrate that the regulatory function of SRPKs in the nuclear targeting of SR proteins is conserved from fission yeast to human, indicating a general mechanism of reversible phosphorylation to control the activities of SR proteins in RNA metabolism through cellular partitioning.


Human Molecular Genetics | 2013

The Birt–Hogg–Dubé tumor suppressor Folliculin negatively regulates ribosomal RNA synthesis

Kriti Gaur; Jinghong Li; Dakun Wang; Pranabananda Dutta; Shian Jang Yan; Amy Tsurumi; Hartmut Land; Guan Wu; Willis X. Li

Birt-Hogg-Dubé syndrome (BHD) is a human cancer disorder caused by mutations in the tumor suppressor gene Folliculin (FLCN) with unknown biological functions. Here, we show that the Drosophila homolog of FLCN, dFLCN (a.k.a. dBHD) localizes to the nucleolus and physically interacts with the 19S proteasomal ATPase, Rpt4, a nucleolar resident and known regulator of rRNA transcription. Downregulation of dFLCN resulted in an increase in nucleolar volume and upregulation of rRNA synthesis, whereas dFLCN overexpression reduced rRNA transcription and counteracted the effects of Rpt4 on rRNA production by preventing the association of Rpt4 with the rDNA locus. We further show that human FLCN exhibited evolutionarily conserved function and that Rpt4 knockdown inhibits the growth of FLCN-deficient human renal cancer cells in mouse xenografts. Our study suggests that FLCN functions as a tumor suppressor by negatively regulating rRNA synthesis.


Nature microbiology | 2016

A Quorum Sensing Signal Promotes Host Tolerance Training Through HDAC1-Mediated Epigenetic Reprogramming

Arunava Bandyopadhaya; Amy Tsurumi; Damien Maura; Kate L. Jeffrey; Laurence G. Rahme

The mechanisms by which pathogens evade elimination without affecting host fitness are not well understood. For the pathogen Pseudomonas aeruginosa, this evasion appears to be triggered by excretion of the quorum-sensing molecule 2-aminoacetophenone, which dampens host immune responses and modulates host metabolism, thereby enabling the bacteria to persist at a high burden level. Here, we examined how 2-aminoacetophenone trains host tissues to become tolerant to a high bacterial burden, without compromising host fitness. We found that 2-aminoacetophenone regulates histone deacetylase 1 expression and activity, resulting in hypo-acetylation of lysine 18 of histone H3 at pro-inflammatory cytokine loci. Specifically, 2-aminoacetophenone induced reprogramming of immune cells occurs via alterations in histone acetylation of immune cytokines in vivo and in vitro. This host epigenetic reprograming, which was maintained for up to 7 days, dampened host responses to subsequent exposure to 2-aminoacetophenone or other unrelated pathogen-associated molecules. The process was found to involve a distinct molecular mechanism of host chromatin regulation. Inhibition of histone deacetylase 1 prevented the immunomodulatory effects of 2-aminoacetophenone. These observations provide the first mechanistic example of a quorum-sensing molecule regulating a host epigenome to enable tolerance of infection. These insights have enormous potential for developing preventive treatments against bacterial infections.

Collaboration


Dive into the Amy Tsurumi's collaboration.

Top Co-Authors

Avatar

Willis X. Li

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shian Jang Yan

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar

Yok-Ai Que

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar

Arunava Bandyopadhaya

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinghong Li

University of California

View shared research outputs
Top Co-Authors

Avatar

Kimberly Larson

University of Rochester Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge