Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy V. Kaucher is active.

Publication


Featured researches published by Amy V. Kaucher.


Biology of Reproduction | 2011

Inhibitor of DNA Binding 4 Is Expressed Selectively by Single Spermatogonia in the Male Germline and Regulates the Self-Renewal of Spermatogonial Stem Cells in Mice

Melissa J. Oatley; Amy V. Kaucher; Karen Racicot; Jon M. Oatley

Continual spermatogenesis at a quantitatively normal level is required to sustain male fertility. The foundation of this process relies on maintenance of an undifferentiated spermatogonial population consisting of spermatogonial stem cells (SSCs) that self-renew as well as transient amplifying progenitors produced by differentiation. In mammals, type Asingle spermatogonia form the SSC population, but molecular markers distinguishing these from differentiating progenitors are undefined and knowledge of mechanisms regulating their functions is limited. We show that in the mouse male germline the transcriptional repressor ID4 is expressed by a subpopulation of undifferentiated spermatogonia and selectively marks Asingle spermatogonia. In addition, we found that ID4 expression is up-regulated in isolated SSC-enriched fractions by stimulation from GDNF, a key growth factor driving self-renewal. In mice lacking ID4 expression, quantitatively normal spermatogenesis was found to be impaired due to progressive loss of the undifferentiated spermatogonial population during adulthood. Moreover, reduction of ID4 expression by small interfering RNA treatment abolished the ability of wild-type SSCs to expand in vitro during long-term culture without affecting their survival. Collectively, these results indicate that ID4 is a distinguishing marker of SSCs in the mammalian germline and plays an important role in the regulation of self-renewal.


Genes & Development | 2014

Functional and molecular features of the Id4+ germline stem cell population in mouse testes

Frieda Chan; Melissa J. Oatley; Amy V. Kaucher; Qi-En Yang; Charles J. Bieberich; Cooduvalli S. Shashikant; Jon M. Oatley

The maintenance of cycling cell lineages relies on undifferentiated subpopulations consisting of stem and progenitor pools. Features that delineate these cell types are undefined for many lineages, including spermatogenesis, which is supported by an undifferentiated spermatogonial population. Here, we generated a transgenic mouse line in which spermatogonial stem cells are marked by expression of an inhibitor of differentiation 4 (Id4)-green fluorescent protein (Gfp) transgene. We found that Id4-Gfp(+) cells exist primarily as a subset of the type A(single) pool, and their frequency is greatest in neonatal development and then decreases in proportion during establishment of the spermatogenic lineage, eventually comprising ∼ 2% of the undifferentiated spermatogonial population in adulthood. RNA sequencing analysis revealed that expression of 11 and 25 genes is unique for the Id4-Gfp(+)/stem cell and Id4-Gfp(-)/progenitor fractions, respectively. Collectively, these findings provide the first definitive evidence that stem cells exist as a rare subset of the A(single) pool and reveal transcriptome features distinguishing stem cell and progenitor states within the mammalian male germline.


Development | 2013

MicroRNAs 221 and 222 regulate the undifferentiated state in mammalian male germ cells.

Qi-En Yang; Karen Racicot; Amy V. Kaucher; Melissa J. Oatley; Jon M. Oatley

Continuity of cycling cell lineages relies on the activities of undifferentiated stem cell-containing subpopulations. Transition to a differentiating state must occur periodically in a fraction of the population to supply mature cells, coincident with maintenance of the undifferentiated state in others to sustain a foundational stem cell pool. At present, molecular mechanisms regulating these activities are poorly defined for most cell lineages. Spermatogenesis is a model process that is supported by an undifferentiated spermatogonial population and transition to a differentiating state involves attained expression of the KIT receptor. We found that impaired function of the X chromosome-clustered microRNAs 221 and 222 (miR-221/222) in mouse undifferentiated spermatogonia induces transition from a KIT– to a KIT+ state and loss of stem cell capacity to regenerate spermatogenesis. Both Kit mRNA and KIT protein abundance are influenced by miR-221/222 function in spermatogonia. Growth factors that promote maintenance of undifferentiated spermatogonia upregulate miR-221/222 expression; whereas exposure to retinoic acid, an inducer of spermatogonial differentiation, downregulates miR-221/222 abundance. Furthermore, undifferentiated spermatogonia overexpressing miR-221/222 are resistant to retinoic acid-induced transition to a KIT+ state and are incapable of differentiation in vivo. These findings indicate that miR-221/222 plays a crucial role in maintaining the undifferentiated state of mammalian spermatogonia through repression of KIT expression.


Journal of Cell Science | 2013

CXCL12–CXCR4 signaling is required for the maintenance of mouse spermatogonial stem cells

Qi-En Yang; Dongwon Kim; Amy V. Kaucher; Melissa J. Oatley; Jon M. Oatley

Summary Continual spermatogenesis relies on the activities of a tissue-specific stem cell population referred to as spermatogonial stem cells (SSCs). Fate decisions of stem cells are influenced by their niche environments, a major component of which is soluble factors secreted by support cells. At present, the factors that constitute the SSC niche are undefined. We explored the role of chemokine (C-X-C motif) ligand 12 (CXCL12) signaling via its receptor C-X-C chemokine receptor type 4 (CXCR4) in regulation of mouse SSC fate decisions. Immunofluorescent staining for CXCL12 protein in cross sections of testes from both pup and adult mice revealed its localization at the basement membrane of seminiferous tubules. Within the undifferentiated spermatogonial population of mouse testes, a fraction of cells were found to express CXCR4 and possess stem cell capacity. Inhibition of CXCR4 signaling in primary cultures of mouse undifferentiated spermatogonia resulted in SSC loss, in part by reducing proliferation and increasing the transition to a progenitor state primed for differentiation upon stimulation by retinoic acid. In addition, CXCL12–CXCR4 signaling in mouse SSCs was found to be important for colonization of recipient testes following transplantation, possibly by influencing homing to establish stem-cell niches. Furthermore, inhibition of CXCR4 signaling in testes of adult mice impaired SSC maintenance, leading to loss of the germline. Collectively, these findings indicate that CXCL12 is an important component of the growth factor milieu of stem cells in mammalian testes and that it signals via the CXCR4 to regulate maintenance of the SSC pool.


Biology of Reproduction | 2010

The POU Domain Transcription Factor POU3F1 Is an Important Intrinsic Regulator of GDNF-Induced Survival and Self-Renewal of Mouse Spermatogonial Stem Cells

Xin Wu; Jon M. Oatley; Melissa J. Oatley; Amy V. Kaucher; Mary R. Avarbock; Ralph L. Brinster

Continual spermatogenesis relies on a pool of spermatogonial stem cells (SSCs) that possess the capacity for self-renewal and differentiation. Maintenance of this pool depends on survival of SSCs throughout the lifetime of a male. Response to extrinsic stimulation from glial cell line-derived neurotrophic factor (GDNF), mediated by the PIK3/AKT signaling cascade, is a key pathway of SSC survival. In this study, we found that expression of the POU domain transcription factor POU3F1 in cultured SSCs is up-regulated via this mechanism. Reduction of Pou3f1 gene expression by short interfering RNA (siRNA) treatment induced apoptosis in cultured germ cell populations, and transplantation analyses revealed impaired SSC maintenance in vitro. POU3F1 expression was localized to spermatogonia in cross-sections of prepubertal and adult testes, implying a similar role in vivo. Through comparative analyses, we found that expression of POU5F1, another POU transcription factor implicated as essential for SSC self-renewal, is not regulated by GDNF in cultured SSCs. Transplantation analyses following siRNA treatment showed that POU5F1 expression is not essential for SSC maintenance in vitro. Additionally, expression of NODAL, a putative autocrine regulator of POU5F1 expression in mouse germ cells, could not be detected in SSCs isolated from testes or cultured SSCs. Collectively, these results indicate that POU3F1, but not POU5F1, is an intrinsic regulator of GDNF-induced survival and self-renewal of mouse SSCs.


Biology of Reproduction | 2010

Regulation of Mouse spermatogonial Stem Cell Differentiation by STAT3 Signaling

Jon M. Oatley; Amy V. Kaucher; Mary R. Avarbock; Ralph L. Brinster

Homeostasis of many tissues is maintained by self-renewal and differentiation of stem cells. Spermatogenesis is one such system relying on the activity of spermatogonial stem cells (SSCs). Several key regulators of SSC self-renewal have been identified, yet knowledge of molecules that control SSC differentiation is undefined. In this study, we found that transient impairment of STAT3 signaling enhances SSC self-renewal in vitro without affecting general spermatogonial proliferation, indicating an alteration in the balance of SSC fate decisions that inhibited differentiation. Confirming this observation, short hairpin RNA-mediated stable reduction of STAT3 expression in cultured SSCs abolished their ability to differentiate beyond the undifferentiated spermatogonial stage following transplantation into recipient testes. Collectively, these results demonstrate that STAT3 promotes the differentiation of SSCs. In contrast, STAT3 plays a central role in maintaining self-renewal of mouse embryonic stem cells, and STAT signaling is essential for self-renewal of male germline stem cells in Drosophila.


Biology of Reproduction | 2012

NEUROG3 Is a Critical Downstream Effector for STAT3-Regulated Differentiation of Mammalian Stem and Progenitor Spermatogonia

Amy V. Kaucher; Melissa J. Oatley; Jon M. Oatley

ABSTRACT Spermatogenesis relies on coordinated differentiation of stem and progenitor spermatogonia, and the transcription factor STAT3 is essential for this process in mammals. Here we studied the THY1+ spermatogonial population in mouse testes, which contains spermatogonial stem cells (SSC) and non-stem cell progenitor spermatogonia, to further define the downstream mechanism regulating differentiation. Transcript abundance for the bHLH transcription factor Neurog3 was found to be significantly reduced upon transient inhibition of STAT3 signaling in these cells and exposure to GDNF, a key growth factor regulating self-renewal of SSCs, suppressed activation of STAT3 and in accordance Neurog3 gene expression. Moreover, STAT3 was found to bind the distal Neurog3 promoter/enhancer region in THY1+ spermatogonia and regulate transcription. Transient inhibition of Neurog3 expression in cultures of proliferating THY1+ spermatogonia increased stem cell content after several self-renewal cycles without effecting overall proliferation of the cells, indicating impaired differentiation of SSCs to produce progenitor spermatogonia. Furthermore, cultured THY1+ spermatogonia with induced deficiency of Neurog3 were found to be incapable of differentiation in vivo following transplantation into testes of recipient mice. Collectively, these results establish a mechanism by which activation of STAT3 regulates the expression of NEUROG3 to subsequently drive differentiation of SSC and progenitor spermatogonia in the mammalian germline.


Biology of Reproduction | 2016

Conditions for Long-Term Culture of Cattle Undifferentiated Spermatogonia

Melissa J. Oatley; Amy V. Kaucher; Qi-En Yang; Muhammad Waqas; Jon M. Oatley

ABSTRACT Continual and robust spermatogenesis relies on the actions of an undifferentiated spermatogonial population that contains stem cells. A remarkable feature of spermatogonial stem cells (SSCs) is the capacity to regenerate spermatogenesis following isolation from a donor testis and transplantation into a permissive recipient testis. This capacity has enormous potential as a tool for enhancing the reproductive capacity of livestock, which can improve production efficiency. Because SSCs are a rare subset of the undifferentiated spermatogonial population, a period of in vitro amplification in number following isolation from donor testicular tissue is essential. Here, we describe methodology for isolation of a cell fraction from prepubertal bull testes that is enriched for undifferentiated spermatogonia and long-term maintenance of the cells in both the feeder cell coculture and the feeder-free format. To achieve this method, we derived bovine fetal fibroblasts (BFF) to serve as feeders for optimizing medium conditions that promote maintenance of bovine undifferentiated spermatogonia for at least 2 mo. In addition, we devised a feeder-free system with BFF-conditioned medium that sustained bovine undifferentiated spermatogonia for at least 1 mo in vitro. The methodologies described could be optimized to provide platforms for exponential expansion of bovine SSCs that will provide the numbers needed for transplantation into recipient testes.


Scientific Reports | 2017

Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene

Ki-Eun Park; Amy V. Kaucher; Anne M. Powell; Muhammad Waqas; Shelley E. S. Sandmaier; Melissa J. Oatley; Chi-Hun Park; Ahmed Tibary; David M. Donovan; Le Ann Blomberg; Simon G. Lillico; C. Bruce A. Whitelaw; Alan Mileham; Bhanu Prakash V.L. Telugu; Jon M. Oatley

Genome editing tools have revolutionized the generation of genetically modified animals including livestock. In particular, the domestic pig is a proven model of human physiology and an agriculturally important species. In this study, we utilized the CRISPR/Cas9 system to edit the NANOS2 gene in pig embryos to generate offspring with mono-allelic and bi-allelic mutations. We found that NANOS2 knockout pigs phenocopy knockout mice with male specific germline ablation but other aspects of testicular development are normal. Moreover, male pigs with one intact NANOS2 allele and female knockout pigs are fertile. From an agriculture perspective, NANOS2 knockout male pigs are expected to serve as an ideal surrogate for transplantation of donor spermatogonial stem cells to expand the availability of gametes from genetically desirable sires.


Biology of Reproduction | 2016

TSPAN8 Expression Distinguishes Spermatogonial Stem Cells in the Prepubertal Mouse Testis

Kazadi N. Mutoji; Anukriti Singh; Thu Nguyen; Heidi Gildersleeve; Amy V. Kaucher; Melissa J. Oatley; Jon M. Oatley; Ellen K. Velte; Christopher B. Geyer; Keren Cheng; John R. McCarrey; Brian P. Hermann

ABSTRACT Precise separation of spermatogonial stem cells (SSCs) from progenitor spermatogonia that lack stem cell activity and are committed to differentiation remains a challenge. To distinguish between these spermatogonial subtypes, we identified genes that exhibited bimodal mRNA levels at the single-cell level among undifferentiated spermatogonia from Postnatal Day 6 mouse testes, including Tspan8, Epha2, and Pvr, each of which encode cell surface proteins useful for cell selection. Transplantation studies provided definitive evidence that a TSPAN8-high subpopulation is enriched for SSCs. RNA-seq analyses identified genes differentially expressed between TSPAN8-high and -low subpopulations that clustered into multiple biological pathways potentially involved in SSC renewal or differentiation, respectively. Methyl-seq analysis identified hypomethylated domains in the promoters of these genes in both subpopulations that colocalized with peaks of histone modifications defined by ChIP-seq analysis. Taken together, these results demonstrate functional heterogeneity among mouse undifferentiated spermatogonia and point to key biological characteristics that distinguish SSCs from progenitor spermatogonia.

Collaboration


Dive into the Amy V. Kaucher's collaboration.

Top Co-Authors

Avatar

Jon M. Oatley

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Melissa J. Oatley

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Qi-En Yang

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Mary R. Avarbock

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Ralph L. Brinster

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne M. Powell

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Donovan

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Frieda Chan

Washington State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge