Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy V. Paschall is active.

Publication


Featured researches published by Amy V. Paschall.


Journal of Biological Chemistry | 2013

Deregulation of Apoptotic Factors Bcl-xL and Bax Confers Apoptotic Resistance to Myeloid-derived Suppressor Cells and Contributes to Their Persistence in Cancer

Xiaolin Hu; Kankana Bardhan; Amy V. Paschall; Dafeng Yang; Jennifer L. Waller; Mary Anne Park; Asha Nayak-Kapoor; Thomas A. Samuel; Scott I. Abrams; Kebin Liu

Background: The mechanism underlying MDSC persistence in tumor-bearing hosts is elusive. Results: IRF8 is down-regulated in MDSCs, resulting in Fas, Bax, and Bcl-xL deregulation and decreased spontaneous apoptosis. Conclusion: Increased resistance to Fas-mediated apoptosis is at least partially responsible for MDSC accumulation. Significance: Targeting Bcl-xL is potentially an effective approach to suppress MDSCs in cancer therapy. Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cells that accumulate in response to tumor progression. Compelling data from mouse models and human cancer patients showed that tumor-induced inflammatory mediators induce MDSC differentiation. However, the mechanisms underlying MDSC persistence is largely unknown. Here, we demonstrated that tumor-induced MDSCs exhibit significantly decreased spontaneous apoptosis as compared with myeloid cells with the same phenotypes from tumor-free mice. Consistent with the decreased apoptosis, cell surface Fas receptor decreased significantly in tumor-induced MDSCs. Screening for changes of key apoptosis mediators downstream the Fas receptor revealed that expression levels of IRF8 and Bax are diminished, whereas expression of Bcl-xL is increased in tumor-induced MDSCs. We further determined that IRF8 binds directly to Bax and Bcl-x promoter in primary myeloid cells in vivo, and IRF8-deficient MDSC-like cells also exhibit increased Bcl-xL and decreased Bax expression. Analysis of CD69 and CD25 levels revealed that cytotoxic T lymphocytes (CTLs) are partially activated in tumor-bearing hosts. Strikingly, FasL but not perforin and granzymes were selectively activated in CTLs in the tumor-bearing host. ABT-737 significantly increased the sensitivity of MDSCs to Fas-mediated apoptosis in vitro. More importantly, ABT-737 therapy increased MDSC spontaneous apoptosis and decreased MDSC accumulation in tumor-bearing mice. Our data thus determined that MDSCs use down-regulation of IRF8 to alter Bax and Bcl-xL expression to deregulate the Fas-mediated apoptosis pathway to evade elimination by host CTLs. Therefore, targeting Bcl-xL is potentially effective in suppression of MDSC persistence in cancer therapy.


Journal of Immunology | 2015

IFN Regulatory Factor 8 Represses GM-CSF Expression in T Cells To Affect Myeloid Cell Lineage Differentiation

Amy V. Paschall; Ruihua Zhang; Chen Feng Qi; Kankana Bardhan; Liang Peng; Geming Lu; Jianjun Yang; Miriam Merad; Tracy L. McGaha; Gang Zhou; Andrew L. Mellor; Scott I. Abrams; Herbert C. Morse; Keiko Ozato; Huabao Xiong; Kebin Liu

During hematopoiesis, hematopoietic stem cells constantly differentiate into granulocytes and macrophages via a distinct differentiation program that is tightly controlled by myeloid lineage-specific transcription factors. Mice with a null mutation of IFN regulatory factor 8 (IRF8) accumulate CD11b+Gr1+ myeloid cells that phenotypically and functionally resemble tumor-induced myeloid-derived suppressor cells (MDSCs), indicating an essential role of IRF8 in myeloid cell lineage differentiation. However, IRF8 is expressed in various types of immune cells, and whether IRF8 functions intrinsically or extrinsically in regulation of myeloid cell lineage differentiation is not fully understood. In this study, we report an intriguing finding that, although IRF8-deficient mice exhibit deregulated myeloid cell differentiation and resultant accumulation of CD11b+Gr1+ MDSCs, surprisingly, mice with IRF8 deficiency only in myeloid cells exhibit no abnormal myeloid cell lineage differentiation. Instead, mice with IRF8 deficiency only in T cells exhibited deregulated myeloid cell differentiation and MDSC accumulation. We further demonstrated that IRF8-deficient T cells exhibit elevated GM-CSF expression and secretion. Treatment of mice with GM-CSF increased MDSC accumulation, and adoptive transfer of IRF8-deficient T cells, but not GM-CSF–deficient T cells, increased MDSC accumulation in the recipient chimeric mice. Moreover, overexpression of IRF8 decreased GM-CSF expression in T cells. Our data determine that, in addition to its intrinsic function as an apoptosis regulator in myeloid cells, IRF8 also acts extrinsically to repress GM-CSF expression in T cells to control myeloid cell lineage differentiation, revealing a novel mechanism that the adaptive immune component of the immune system regulates the innate immune cell myelopoiesis in vivo.


Oncogenesis | 2016

An essential role of Ffar2 (Gpr43) in dietary fibre-mediated promotion of healthy composition of gut microbiota and suppression of intestinal carcinogenesis

S Sivaprakasam; Ashish Gurav; Amy V. Paschall; G L Coe; Kapil Chaudhary; Y Cai; Ravindra Kolhe; P Martin; Lei Huang; Huidong Shi; H Sifuentes; Matam Vijay-Kumar; Stuart A. Thompson; David H. Munn; Andrew L. Mellor; Tracy L. McGaha; P Shiao; C W Cutler; Kebin Liu; Vadivel Ganapathy; H Li; Nagendra Singh

Composition of the gut microbiota has profound effects on intestinal carcinogenesis. Diet and host genetics play critical roles in shaping the composition of gut microbiota. Whether diet and host genes interact with each other to bring specific changes in gut microbiota that affect intestinal carcinogenesis is unknown. Ability of dietary fibre to specifically increase beneficial gut microbiota at the expense of pathogenic bacteria in vivo via unknown mechanism is an important process that suppresses intestinal inflammation and carcinogenesis. Free fatty acid receptor 2 (FFAR2 or GPR43) is a receptor for short-chain fatty acids (acetate, propionate and butyrate), metabolites of dietary fibre fermentation by gut microbiota. Here, we show FFAR2 is down modulated in human colon cancers than matched adjacent healthy tissue. Consistent with this, Ffar2−/− mice are hypersusceptible to development of intestinal carcinogenesis. Dietary fibre suppressed colon carcinogenesis in an Ffar2-dependent manner. Ffar2 played an essential role in dietary fibre-mediated promotion of beneficial gut microbiota, Bifidobacterium species (spp) and suppression of Helicobacter hepaticus and Prevotellaceae. Moreover, numbers of Bifidobacterium is reduced, whereas those of Prevotellaceae are increased in human colon cancers than matched adjacent normal tissue. Administration of Bifidobacterium mitigated intestinal inflammation and carcinogenesis in Ffar2−/− mice. Taken together, these findings suggest that interplay between dietary fibre and Ffar2 play a key role in promoting healthy composition of gut microbiota that stimulates intestinal health.


BMC Cancer | 2014

Ceramide targets xIAP and cIAP1 to sensitize metastatic colon and breast cancer cells to apoptosis induction to suppress tumor progression

Amy V. Paschall; Mary Zimmerman; Christina M. Torres; Dafeng Yang; May R. Chen; Xia Li; Erhard Bieberich; Aiping Bai; Jacek Bielawski; Alicja Bielawska; Kebin Liu

BackgroundCeramide is a bioeffector that mediates various cellular processes, including apoptosis. However, the mechanism underlying ceramide function in apoptosis is apparently cell type-dependent and is not well-understood. We aimed at identifying molecular targets of ceramide in metastatic human colon and breast cancer cells, and determining the efficacy of ceramide analog in suppression of colon and breast cancer metastasis.MethodsThe activity of and mechanism underlying ceramide as a cytotoxic agent, and as a sensitizer for Fas-mediated apoptosis was analyzed in human cell lines established from primary or metastatic colon and breast cancers. The efficacy of ceramide analog LCL85 in suppression of metastasis was examined in preclinical mouse tumor models.ResultsExposure of human colon carcinoma cells to ceramide analog LCL85 results in apoptosis in a dose-dependent manner. Interestingly, a sublethal dose of LCL85 increased C16 ceramide content and overcame tumor cell resistance to Fas-mediated apoptosis. Subsequently, treatment of tumor cells with exogenous C16 ceramide resulted in increased tumor cell sensitivity to Fas-mediated apoptosis. LCL85 resembles Smac mimetic BV6 in sensitization of colon carcinoma cells to Fas-mediated apoptosis by inducing proteasomal degradation of cIAP1 and xIAP proteins. LCL85 also decreased xIAP1 and cIAP1 protein levels and sensitized metastatic human breast cancer cells to Fas-mediated apoptosis. Silencing xIAP and cIAP1 with specific siRNAs significantly increased the metastatic human colon carcinoma cell sensitivity to Fas-mediated apoptosis, suggesting that IAP proteins mediate apoptosis resistance in metastatic human colon carcinoma cells and ceramide induces IAP protein degradation to sensitize the tumor cells to apoptosis induction. Consistent with its apoptosis sensitization activity, subtoxic doses of LCL85 suppressed colon carcinoma cell metastatic potential in an experimental lung metastasis mouse model, as well as breast cancer growth and spontaneous lung metastasis in an orthotopic breast cancer mouse model.ConclusionWe have identified xIAP and cIAP1 as molecular targets of ceramide and determined that ceramide analog LCL85 is an effective sensitizer in overcoming resistance of human cell lines established from metastatic colon and breast cancers to apoptosis induction to suppress metastasis in vivo.


Journal of Immunology | 2015

H3K9 Trimethylation Silences Fas Expression To Confer Colon Carcinoma Immune Escape and 5-Fluorouracil Chemoresistance

Amy V. Paschall; Dafeng Yang; Chunwan Lu; Jeong Hyeon Choi; Xia Li; Feiyan Liu; Mario Figueroa; Nicholas H. Oberlies; Cedric J. Pearce; Wendy B. Bollag; Asha Nayak-Kapoor; Kebin Liu

The Fas–FasL effector mechanism plays a key role in cancer immune surveillance by host T cells, but metastatic human colon carcinoma often uses silencing Fas expression as a mechanism of immune evasion. The molecular mechanism under FAS transcriptional silencing in human colon carcinoma is unknown. We performed genome-wide chromatin immunoprecipitation sequencing analysis and identified that the FAS promoter is enriched with H3K9me3 in metastatic human colon carcinoma cells. The H3K9me3 level in the FAS promoter region is significantly higher in metastatic than in primary cancer cells, and it is inversely correlated with Fas expression level. We discovered that verticillin A is a selective inhibitor of histone methyltransferases SUV39H1, SUV39H2, and G9a/GLP that exhibit redundant functions in H3K9 trimethylation and FAS transcriptional silencing. Genome-wide gene expression analysis identified FAS as one of the verticillin A target genes. Verticillin A treatment decreased H3K9me3 levels in the FAS promoter and restored Fas expression. Furthermore, verticillin A exhibited greater efficacy than decitabine and vorinostat in overcoming colon carcinoma resistance to FasL-induced apoptosis. Verticillin A also increased DR5 expression and overcame colon carcinoma resistance to DR5 agonist drozitumab-induced apoptosis. Interestingly, verticillin A overcame metastatic colon carcinoma resistance to 5-fluorouracil in vitro and in vivo. Using an orthotopic colon cancer mouse model, we demonstrated that tumor-infiltrating cytotoxic T lymphocytes are FasL+ and that FasL-mediated cancer immune surveillance is essential for colon carcinoma growth control in vivo. Our findings determine that H3K9me3 of the FAS promoter is a dominant mechanism underlying FAS silencing and resultant colon carcinoma immune evasion and progression.


Journal of the National Cancer Institute | 2017

The MLL1-H3K4me3 axis-mediated PD-L1 expression and pancreatic cancer immune evasion

Chunwan Lu; Amy V. Paschall; Huidong Shi; Natasha M. Savage; Jennifer L. Waller; Maria Eugenia Sabbatini; Nicholas H. Oberlies; Cedric J. Pearce; Kebin Liu

BACKGROUND Pancreatic cancer is one of the cancers where anti-PD-L1/PD-1 immunotherapy has been unsuccessful. What confers pancreatic cancer resistance to checkpoint immunotherapy is unknown. The aim of this study is to elucidate the underlying mechanism of PD-L1 expression regulation in the context of pancreatic cancer immune evasion. METHODS Pancreatic cancer mouse models and human specimens were used to determine PD-L1 and PD-1 expression and cancer immune evasion. Histone methyltransferase inhibitors, RNAi, and overexpression were used to elucidate the underlying molecular mechanism of PD-L1 expression regulation. All statistical tests were two-sided. RESULTS PD-L1 is expressed in 60% to 90% of tumor cells in human pancreatic carcinomas and in nine of 10 human pancreatic cancer cell lines. PD-1 is expressed in 51.2% to 52.1% of pancreatic tumor-infiltrating cytotoxic T lymphocytes (CTLs). Tumors grow statistically significantly faster in FasL-deficient mice than in wild-type mice (P = .03-.001) and when CTLs are neutralized (P = .03-<.001). H3K4 trimethylation (H3K4me3) is enriched in the cd274 promoter in pancreatic tumor cells. MLL1 directly binds to the cd274 promoter to catalyze H3K4me3 to activate PD-L1 transcription in tumor cells. Inhibition or silencing of MLL1 decreases the H3K4me3 level in the cd274 promoter and PD-L1 expression in tumor cells. Accordingly, inhibition of MLL1 in combination with anti-PD-L1 or anti-PD-1 antibody immunotherapy effectively suppresses pancreatic tumor growth in a FasL- and CTL-dependent manner. CONCLUSIONS The Fas-FasL/CTLs and the MLL1-H3K4me3-PD-L1 axis play contrasting roles in pancreatic cancer immune surveillance and evasion. Targeting the MLL1-H3K4me3 axis is an effective approach to enhance the efficacy of checkpoint immunotherapy against pancreatic cancer.


Cancer immunology research | 2015

IFNγ Induces DNA Methylation–Silenced GPR109A Expression via pSTAT1/p300 and H3K18 Acetylation in Colon Cancer

Kankana Bardhan; Amy V. Paschall; Dafeng Yang; May R. Chen; Priscilla S. Simon; Yangzom D. Bhutia; Pamela M. Martin; Muthusamy Thangaraju; Vadivel Ganapathy; Christopher M. Heaton; Keni Gu; Jeffrey R. Lee; Kebin Liu

Bardhan and colleagues show that short-chain fatty acid receptor GPR109A functions as a tumor suppressor that is silenced by DNA methylation in colon cancer, while host immune cytokine IFNγ upregulates GPR109A expression, via pSTAT1/p300 activation and H3K18 acetylation, to suppress tumor development. Short-chain fatty acids, metabolites produced by colonic microbiota from fermentation of dietary fiber, act as anti-inflammatory agents in the intestinal tract to suppress proinflammatory diseases. GPR109A is the receptor for short-chain fatty acids. The functions of GPR109A have been the subject of extensive studies; however, the molecular mechanisms underlying GPR109A expression is largely unknown. We show that GPR109A is highly expressed in normal human colon tissues, but is silenced in human colon carcinoma cells. The GPR109A promoter DNA is methylated in human colon carcinoma. Strikingly, we observed that IFNγ, a cytokine secreted by activated T cells, activates GPR109A transcription without altering its promoter DNA methylation. Colon carcinoma grows significantly faster in IFNγ-deficient mice than in wild-type mice in an orthotopic colon cancer mouse model. A positive correlation was observed between GPR109A protein level and tumor-infiltrating T cells in human colon carcinoma specimens, and IFNγ expression level is higher in human colon carcinoma tissues than in normal colon tissues. We further demonstrated that IFNγ rapidly activates pSTAT1 that binds to the promoter of p300 to activate its transcription. p300 then binds to the GPR109A promoter to induce H3K18 hyperacetylation, resulting in chromatin remodeling in the methylated GPR109A promoter. The IFNγ-activated pSTAT1 then directly binds to the methylated but hyperacetylated GPR109 promoter to activate its transcription. Overall, our data indicate that GPR109A acts as a tumor suppressor in colon cancer, and the host immune system might use IFNγ to counteract DNA methylation–mediated GPR109A silencing as a mechanism to suppress tumor development. Cancer Immunol Res; 3(7); 795–805. ©2015 AACR.


BMC Cancer | 2015

The NF-κB p65 and p50 homodimer cooperate with IRF8 to activate iNOS transcription

Priscilla S. Simon; Sarah K. Sharman; Chunwan Lu; Dafeng Yang; Amy V. Paschall; Sidhartha S. Tulachan; Kebin Liu

BackgroundInducible nitric oxide synthase (iNOS) metabolizes L-arginine to produce nitric oxide (NO) which was originally identified in myeloid cells as a host defense mechanism against pathogens. Recent studies, however, have revealed that iNOS is often induced in tumor cells and myeloid cells in the tumor microenvironment. Compelling experimental data have shown that iNOS promotes tumor development in certain cellular context and suppresses tumor development in other cellular conditions. The molecular mechanisms underlying these contrasting functions of iNOS is unknown. Because iNOS is often induced by inflammatory signals, it is therefore likely that these contrasting functions of iNOS could be controlled by the inflammatory signaling pathways, which remains to be determined.MethodsiNOS is expressed in colon carcinoma and myeloid cells in the tumor microenvironment. Colon carcinoma and myeloid cell lines were used to elucidate the molecular mechanisms underlying iNOS expression. Chromatin immunoprecipitation and electrophoretic mobility shift assay were used to determine the IFNγ-activated pSTAT1 and NF-κB association with the chromatin DNA of the nos2 promoter.ResultsWe show here that iNOS is dramatically up-regulated in inflammed human colon tissues and in human colon carcinoma as compared to normal colon tissue. iNOS is expressed in either the colon carcinoma cells or immune cells within the tumor microenvironment. On the molecular level, the proinflammatory IFNγ and NF-κB signals induce iNOS expression in human colon cancer cells. We further demonstrate that NF-κB directly binds to the NOS2 promoter to regulate iNOS expression. Although neither the IFNγ signaling pathway nor the NF-κB signaling pathway alone is sufficient to induce iNOS expression in myeloid cells, IFNγ and NF-κB synergistically induce iNOS expression in myeloid cells. Furthermore, we determine that IFNγ up-regulates IRF8 expression to augment NF-κB induction of iNOS expression. More interestingly, we observed that the p65/p65 and p50/p50 homodimers, not the canonical p65/p50 heterodimer, directly binds to the nos2 promoter to regulate iNOS expression in myeloid cells.ConclusionsIFNγ-induced IRF8 acts in concert with NF-κB to regulate iNOS expression in both colon carcinoma and myeloid cells. In myeloid cells, the NF-κB complexes that bind to the nos2 promoter are p65/p65 and p50/p50 homodimers.


Cancer Research | 2017

SETD1B Activates iNOS Expression in Myeloid-Derived Suppressor Cells

Priscilla S. Redd; Mohammed L. Ibrahim; John D. Klement; Sarah K. Sharman; Amy V. Paschall; Dafeng Yang; Asha Nayak-Kapoor; Kebin Liu

Inducible nitric oxide synthase (iNOS) generates nitric oxide (NO) in myeloid cells that acts as a defense mechanism to suppress invading microorganisms or neoplastic cells. In tumor-bearing mice, elevated iNOS expression is a hallmark of myeloid-derived suppressor cells (MDSC). MDSCs use NO to nitrate both the T-cell receptor and STAT1, thus inhibiting T-cell activation and the antitumor immune response. The molecular mechanisms underlying iNOS expression and regulation in tumor-induced MDSCs are unknown. We report here that deficiency in IRF8 results in diminished iNOS expression in both mature CD11b+Gr1- and immature CD11b+Gr1+ myeloid cells in vivo Strikingly, although IRF8 was silenced in tumor-induced MDSCs, iNOS expression was significantly elevated in tumor-induced MDSCs, suggesting that the expression of iNOS is regulated by an IRF8-independent mechanism under pathologic conditions. Furthermore, tumor-induced MDSCs exhibited diminished STAT1 and NF-κB Rel protein levels, the essential inducers of iNOS in myeloid cells. Instead, tumor-induced MDSCs showed increased SETD1B expression as compared with their cellular equivalents in tumor-free mice. Chromatin immunoprecipitation revealed that H3K4me3, the target of SETD1B, was enriched at the nos2 promoter in tumor-induced MDSCs, and inhibition or silencing of SETD1B diminished iNOS expression in tumor-induced MDSCs. Our results show how tumor cells use the SETD1B-H3K4me3 epigenetic axis to bypass a normal role for IRF8 expression in activating iNOS expression in MDSCs when they are generated under pathologic conditions. Cancer Res; 77(11); 2834-43. ©2017 AACR.


Oncotarget | 2016

CD133 + CD24 lo defines a 5-Fluorouracil-resistant colon cancer stem cell-like phenotype

Amy V. Paschall; Dafeng Yang; Chunwan Lu; Priscilla S. Redd; Jeong Hyeon Choi; Christopher M. Heaton; Jeffrey R. Lee; Asha Nayak-Kapoor; Kebin Liu

The chemotherapeutic agent 5-Fluorouracil (5-FU) is the most commonly used drug for patients with advanced colon cancer. However, development of resistance to 5-FU is inevitable in almost all patients. The mechanism by which colon cancer develops 5-FU resistance is still unclear. One recently proposed theory is that cancer stem-like cells underlie colon cancer 5-FU resistance, but the phenotypes of 5-FU-resistant colon cancer stem cells are still controversial. We report here that 5-FU treatment selectively enriches a subset of CD133+ colon cancer cells in vitro. 5-FU chemotherapy also increases CD133+ tumor cells in human colon cancer patients. However, sorted CD133+ colon cancer cells exhibit no increased resistance to 5-FU, and CD133 levels exhibit no correlation with colon cancer patient survival or cancer recurrence. Genome-wide analysis of gene expression between sorted CD133+ colon cancer cells and 5-FU-selected colon cancer cells identifies 207 differentially expressed genes. CD24 is one of the genes whose expression level is lower in the CD133+ and 5-FU-resistant colon cancer cells as compared to CD133+ and 5-FU-sensitive colon cancer cells. Consequently, CD133+CD24lo cells exhibit decreased sensitivity to 5-FU. Therefore, we determine that CD133+CD24lo phenotype defines 5-FU-resistant human colon cancer stem cell-like cells.

Collaboration


Dive into the Amy V. Paschall's collaboration.

Top Co-Authors

Avatar

Kebin Liu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Dafeng Yang

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Chunwan Lu

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Kankana Bardhan

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Asha Nayak-Kapoor

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Priscilla S. Redd

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Scott I. Abrams

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Xia Li

Zhejiang University

View shared research outputs
Top Co-Authors

Avatar

Andrew L. Mellor

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge