Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amy Winship is active.

Publication


Featured researches published by Amy Winship.


PLOS ONE | 2012

Decidual-Secreted Factors Alter Invasive Trophoblast Membrane and Secreted Proteins Implying a Role for Decidual Cell Regulation of Placentation

Ellen Menkhorst; Natalie Lane; Amy Winship; Priscilla Li; Joanne Yap; Katie Meehan; Adam Rainczuk; Andrew N. Stephens; Evdokia Dimitriadis

Inadequate or inappropriate implantation and placentation during the establishment of human pregnancy is thought to lead to first trimester miscarriage, placental insufficiency and other obstetric complications. To create the placental blood supply, specialized cells, the ‘extravillous trophoblast’ (EVT) invade through the differentiated uterine endometrium (the decidua) to engraft and remodel uterine spiral arteries. We hypothesized that decidual factors would regulate EVT function by altering the production of EVT membrane and secreted factors. We used a proteomics approach to identify EVT membrane and secreted proteins regulated by decidual cell factors. Human endometrial stromal cells were decidualized in vitro by treatment with estradiol (10−8 M), medroxyprogesterone acetate (10−7 M) and cAMP (0.5 mM) for 14 days. Conditioned media (CM) was collected on day 2 (non-decidualized CM) and 14 (decidualized CM) of treatment. Isolated primary EVT cultured on Matrigel™ were treated with media control, non-decidualized or decidualized CM for 16 h. EVT CM was fractionated for proteins <30 kDa using size-exclusion affinity nanoparticles (SEAN) before trypsin digestion and HPLC-MS/MS. 43 proteins produced by EVT were identified; 14 not previously known to be expressed in the placenta and 12 which had previously been associated with diseases of pregnancy including preeclampsia. Profilin 1, lysosome associated membrane glycoprotein 1 (LAMP1), dipeptidyl peptidase 1 (DPP1/cathepsin C) and annexin A2 expression by interstitial EVT in vivo was validated by immunhistochemistry. Decidual CM regulation in vitro was validated by western blotting: decidualized CM upregulated profilin 1 in EVT CM and non-decidualized CM upregulated annexin A2 in EVT CM and pro-DPP1 in EVT cell lysate. Here, non-decidualized factors induced protease expression by EVT suggesting that non-decidualized factors may induce a pro-inflammatory cascade. Preeclampsia is a pro-inflammatory condition. Overall, we have demonstrated the potential of a proteomics approach to identify novel proteins expressed by EVT and to uncover the mechanisms leading to disease states.


Nature Reviews Endocrinology | 2016

Fertile ground: human endometrial programming and lessons in health and disease

Jemma Evans; Lois A. Salamonsen; Amy Winship; Ellen Menkhorst; Guiying Nie; Caroline E. Gargett; Eva Dimitriadis

The human endometrium is a highly dynamic tissue that is cyclically shed, repaired, regenerated and remodelled, primarily under the orchestration of oestrogen and progesterone, in preparation for embryo implantation. Humans are among the very few species that menstruate and that, consequently, are equipped with unique cellular and molecular mechanisms controlling these cyclic processes. Many reproductive pathologies are specific to menstruating species, and studies in animal models rarely translate to humans. Abnormal remodelling and regeneration of the human endometrium leads to a range of reproductive complications. Furthermore, the processes regulating endometrial remodelling and implantation, including those controlling hormonal impact, breakdown and repair, stem/progenitor cell activation, inflammation and cell invasion have broad applications to other fields. This Review presents current knowledge regarding the normal and abnormal function of the human endometrium. The development of biomarkers for prediction of uterine diseases and pregnancy disorders and future avenues of investigation to improve fertility and enhance endometrial function are also discussed.


American Journal of Reproductive Immunology | 2013

Preimplantation Human Blastocyst-Endometrial Interactions: The Role of Inflammatory Mediators

Michelle Van Sinderen; Ellen Menkhorst; Amy Winship; Carly Cuman; Evdokia Dimitriadis

Immune factors such as cytokines, chemokines, and growth factors are known to play important roles in the preimplantation interactions and communication between the blastocyst and receptive endometrium. This crucial dialog occurs during the stages when the blastocyst is in the uterine cavity immediately preceding implantation and the establishment of pregnancy. Human preimplantation processes are difficult to study due to restrictions on tissue availability. This review focuses on the expression and role of immune factors in human blastocyst‐endometrial dialog during the very early stages of implantation. It highlights the importance of immune regulators and the need to develop new models to study human implantation.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Interleukin-11 alters placentation and causes preeclampsia features in mice

Amy Winship; Kaori Koga; Ellen Menkhorst; Michelle Van Sinderen; Katarzyna Rainczuk; Miwako Nagai; Carly Cuman; Joanne Yap; Jian-Guo Zhang; David G. Simmons; Morag J. Young; Evdokia Dimitriadis

Significance Preeclampsia is an insidious disease, unique to humans, affecting ∼8% of pregnancies. There are no early detection tests or pharmacological treatments. Impaired placentation is widely accepted to contribute to the pathogenesis. However, the mechanisms remain elusive, given the complications of studying first-trimester placental development in women. A major limitation for the study of new treatments is the lack of available animal models that recapitulate the full spectrum of preeclampsia features. We have developed a mouse model characterized by elevated levels of the cytokine Interleukin-11 (IL11). This study provides evidence of a novel pathway causative of preeclampsia features in vivo. It also provides a novel in vivo mouse model that is useful for preclinical studies to test potential therapeutics. Preeclampsia (PE) is a pregnancy-specific disorder characterized by hypertension and proteinuria after 20 wk gestation. Abnormal extravillous trophoblast (EVT) invasion and remodeling of uterine spiral arterioles is thought to contribute to PE development. Interleukin-11 (IL11) impedes human EVT invasion in vitro and is elevated in PE decidua in women. We demonstrate that IL11 administered to mice causes development of PE features. Immunohistochemistry shows IL11 compromises trophoblast invasion, spiral artery remodeling, and placentation, leading to increased systolic blood pressure (SBP), proteinuria, and intrauterine growth restriction, although nonpregnant mice were unaffected. Real-time PCR array analysis identified pregnancy-associated plasma protein A2 (PAPPA2), associated with PE in women, as an IL11 regulated target. IL11 increased PAPPA2 serum and placental tissue levels in mice. In vitro, IL11 compromised primary human EVT invasion, whereas siRNA knockdown of PAPPA2 alleviated the effect. Genes regulating uterine natural killer (uNK) recruitment and differentiation were down-regulated and uNK cells were reduced after IL11 treatment in mice. IL11 withdrawal in mice at onset of PE features reduced SBP and proteinuria to control levels and alleviated placental labyrinth defects. In women, placental IL11 immunostaining levels increased in PE pregnancies and in serum collected from women before development of early-onset PE, shown by ELISA. These results indicate that elevated IL11 levels result in physiological changes at the maternal–fetal interface, contribute to abnormal placentation, and lead to the development of PE. Targeting placental IL11 may provide a new treatment option for PE.


Placenta | 2013

The role of leukemia inhibitory factor in tubal ectopic pregnancy.

T. Krishnan; Amy Winship; Stefan Eugen Sonderegger; Ellen Menkhorst; Andrew W. Horne; Jeremy D. Brown; Jian-Guo Zhang; Nick Nicola; Stephen Tong; Evdokia Dimitriadis

INTRODUCTION Ectopic pregnancy is unique to humans and a leading cause of maternal morbidity and mortality. The etiology remains unknown however factors regulating embryo implantation likely contribute. Leukemia inhibitory factor (LIF) has roles in extravillous trophoblast adhesion and invasion and is present in ectopic implantation sites. We hypothesised that LIF facilitates blastocyst adhesion/invasion in the Fallopian tube, contributing to ectopic pregnancy. METHODS We immunolocalised LIF receptor (R) in tubal ectopic pregnancy (N = 5). We used an oviduct cell line (OE-E6/E7) to model Fallopian tube epithelial cells and a trophoblast spheroid co-culture model (HTR-8/SVneo cell line formed spheroids) to model blastocyst attachment to the Fallopian tube. We examined LIF signaling pathways in OE-E6/E7 cells by Western blot. The effect of LIF and LIF inhibition (using a novel LIF inhibitor, PEGLA) on first-trimester placental outgrowth was determined. RESULTS LIFR localised to villous and extravillous trophoblast and Fallopian tube epithelium in ectopic pregnancy. LIF activated STAT3 but not the ERK pathway in OE-E6/E7 cells. LIF stimulated HTR-8/SVneo spheroid adhesion to OE-E6/E7 cells which was significantly reduced after PEGLA treatment. LIF promoted placental explants outgrowth, while co-treatment with PEGLA blocked outgrowth. DISCUSSION Our data suggests LIF facilitates the development of ectopic pregnancy by stimulating blastocyst adhesion and trophoblast outgrowth from placental explants. Ectopic pregnancy is usually diagnosed after 6 weeks of pregnancy, therefore PEGLA may be useful in targeting trophoblast growth/invasion. CONCLUSION LIF may contribute to the development of ectopic pregnancies and that pharmacologically targeting LIF-mediated trophoblast outgrowth may be useful as a treatment for ectopic pregnancy.


PLOS ONE | 2015

Effects of Estrogens on Adipokines and Glucose Homeostasis in Female Aromatase Knockout Mice

Michelle Van Sinderen; Gregory R. Steinberg; Sebastian B. Jørgensen; Jane Honeyman; Jenny D.Y. Chow; Kerrie A. Herridge; Amy Winship; Evdokia Dimitriadis; Margaret E. E. Jones; Evan R. Simpson; Wah Chin Boon

The maintenance of glucose homeostasis within the body is crucial for constant and precise performance of energy balance and is sustained by a number of peripheral organs. Estrogens are known to play a role in the maintenance of glucose homeostasis. Aromatase knockout (ArKO) mice are estrogen-deficient and display symptoms of dysregulated glucose metabolism. We aim to investigate the effects of estrogen ablation and exogenous estrogen administration on glucose homeostasis regulation. Six month-old female wildtype, ArKO, and 17β-estradiol (E2) treated ArKO mice were subjected to whole body tolerance tests, serum examination of estrogen, glucose and insulin, ex-vivo muscle glucose uptake, and insulin signaling pathway analyses. Female ArKO mice display increased body weight, gonadal (omental) adiposity, hyperinsulinemia, and liver triglycerides, which were ameliorated upon estrogen treatment. Tolerance tests revealed that estrogen-deficient ArKO mice were pyruvate intolerant hence reflecting dysregulated hepatic gluconeogenesis. Analyses of skeletal muscle, liver, and adipose tissues supported a hepatic-based glucose dysregulation, with a down-regulation of Akt phosphorylation (a key insulin signaling pathway molecule) in the ArKO liver, which was improved with E2 treatment. Concurrently, estrogen treatment lowered ArKO serum leptin and adiponectin levels and increased inflammatory adipokines such as tumour necrosis factor alpha (TNFα) and interleukin 6 (IL6). Furthermore, estrogen deficiency resulted in the infiltration of CD45 macrophages into gonadal adipose tissues, which cannot be reversed by E2 treatment. This study describes the effects of estrogens on glucose homeostasis in female ArKO mice and highlights a primary phenotype of hepatic glucose dysregulation and a parallel estrogen modified adipokine profile.


Placenta | 2013

The chrondroitin sulfate proteoglycan (CSPG4) regulates human trophoblast function

M. Van Sinderen; Carly Cuman; Amy Winship; Ellen Menkhorst; Evdokia Dimitriadis

INTRODUCTION Trophoblast growth and invasion of the uterine endometrium are critical events during placentation and are tightly regulated by locally produced factors. Abnormal placentation can result in early miscarriage or preeclampsia and intrauterine growth restriction, leading to impaired fetal and/or maternal health. Chondroitin sulfate proteoglycan 4 (CSPG4) is involved in cancer cell migration and invasion, processes which are critical during placentation but unlike in cancer, trophoblast invasion is highly regulated. CSPG4 expression and function in trophoblast is unknown. We determined CSPG4 expression in human first trimester placenta and implantation sites, and investigated whether CSPG4 influenced proliferation, migration and invasion of a human extravillous trophoblast (EVT) cell line (HTR8/SVneo cells) as a model for extravillous trophoblast (EVT). METHODS AND RESULTS Immunoreactive CSPG4 localized to EVT cells in the trophoblast shell, subpopulations of interstitial EVT cells within the decidua and cytotrophoblast cells in placental villi. In HTR8/SVneo cells, siRNA knockdown of CSPG4 stimulated proliferation and decreased migration/invasion. In primary first trimester placental villi explants two cytokines, interleukin 11 (IL11) and leukemia inhibitory factor (LIF) with known roles in trophoblast function, stimulated CSPG4 mRNA expression and immunoreactive protein in the cyotrophoblast. DISCUSSION AND CONCLUSION This is the first demonstration of the production and function of CSPG4 in human placentation. These data suggest that locally produced CSPG4 stimulates human EVT migration and invasion and suggests that IL11 and LIF regulate villous cytotrophoblast differentiation towards the invasive phenotype at least in part via CSPG4.


Reproduction, Fertility and Development | 2016

Human extravillous trophoblast invasion: intrinsic and extrinsic regulation

Ellen Menkhorst; Amy Winship; Van Sinderen M; Evdokia Dimitriadis

During the establishment of pregnancy, a human blastocyst implants into the uterine endometrium to facilitate the formation of a functional placenta. Implantation involves the blastocyst adhering to the uterine luminal epithelium before the primitive syncytiotrophoblast and subsequently specialised cells, the extravillous trophoblast (EVT), invade into the decidua in order to engraft and remodel uterine spiral arteries, creating the placental blood supply at the end of the first trimester. Defects in EVT invasion lead to abnormal placentation and thus adverse pregnancy outcomes. The local decidual environment is thought to play a key role in regulating trophoblast invasion. Here we describe the major cell types present in the decidua during the first trimester of pregnancy and review what is known about their regulation of EVT invasion. Overall, the evidence suggests that in a healthy pregnancy almost all cell types in the decidua actively promote EVT invasion and, further, that reduced EVT invasion towards the end of the first trimester is regulated, in part, by the reduced invasive capacity of EVTs shown at this time.


Molecular Cancer Therapeutics | 2016

Targeting Interleukin-11 Receptor-α Impairs Human Endometrial Cancer Cell Proliferation and Invasion In Vitro and Reduces Tumor Growth and Metastasis In Vivo

Amy Winship; Van Sinderen M; Jacqueline F. Donoghue; Rainczuk K; Evdokia Dimitriadis

Endometrial cancer contributes to significant morbidity and mortality in women with advanced stage or recurrent disease. IL11 is a cytokine that regulates cell cycle, invasion, and migration, all hallmarks of cancer. IL11 is elevated in endometrial tumors and uterine lavage fluid in women with endometrial cancer, and alters endometrial epithelial cancer cell adhesion and migration in vitro, but its role in endometrial tumorigenesis in vivo is unknown. We injected mice subcutaneously with human-derived Ishikawa or HEC1A endometrial epithelial cancer cells (ectopic), or HEC1A cells into the uterus (orthotopic) to develop endometrial cancer mouse models. Administration of anti-human IL11 receptor (R) α blocking antibody dramatically reduced HEC1A-derived tumor growth in both models and reduced peritoneal metastatic lesion spread in the orthotopic model, compared with IgG. Anti-human IL11Rα retained a well-differentiated, endometrial epithelial phenotype in the HEC1A ectopic mice, suggesting it prevented epithelial-to-mesenchymal transition. Blockade of mouse IL11Rα with anti-mouse IL11Rα antibody did not alter tumor growth, suggesting that cancer epithelial cell IL11 signaling is required for tumor progression. In vitro, anti-human IL11Rα antibody significantly reduced Ishikawa and HEC1A cell proliferation and invasion and promoted apoptosis. Anti-human, but not anti-mouse, IL11Rα antibody reduced STAT3, but not ERK, activation in HEC1A cells in vitro and in endometrial tumors in xenograft mice. We demonstrated that targeted blockade of endometrial cancer epithelial cell IL11 signaling reduced primary tumor growth and impaired metastasis in ectopic and orthotopic endometrial cancer models in vivo. Our data suggest that therapeutically targeting IL11Rα could inhibit endometrial cancer growth and dissemination. Mol Cancer Ther; 15(4); 720–30. ©2016 AACR.


Scientific Reports | 2015

Blocking Endogenous Leukemia Inhibitory Factor During Placental Development in Mice Leads to Abnormal Placentation and Pregnancy Loss.

Amy Winship; Jeanne Correia; Tara Krishnan; Ellen Menkhorst; Carly Cuman; Jian-Guo Zhang; Nicos A. Nicola; Evdokia Dimitriadis

The placenta forms the interface between the maternal and fetal circulation and is critical for the establishment of a healthy pregnancy. Specialized trophoblast cells derived from the embryonic trophectoderm play a pivotal role in the establishment of the placenta. Leukemia inhibitory factor (LIF) is one of the predominant cytokines present in the placenta during early pregnancy. LIF has been shown to regulate trophoblast adhesion and invasion in vitro, however its precise role in vivo is unknown. We hypothesized that LIF would be required for normal placental development in mice. LIF and LIFRα were immunolocalized to placental trophoblasts and fetal vessels in mouse implantation sites during mid-gestation. Temporally blocking LIF action during specific periods of placental development via intraperitoneal administration of our specific LIFRα antagonist, PEGLA, resulted in abnormal placental trophoblast and vascular morphology and reduced activated STAT3 but not ERK. Numerous genes regulating angiogenesis and oxidative stress were altered in the placenta in response to LIF inhibition. Pregnancy viability was also significantly compromised in PEGLA treated mice. Our data suggest that LIF plays an important role in placentation in vivo and the maintenance of healthy pregnancy.

Collaboration


Dive into the Amy Winship's collaboration.

Top Co-Authors

Avatar

Evdokia Dimitriadis

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Michelle Van Sinderen

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian-Guo Zhang

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Katarzyna Rainczuk

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Nicos A. Nicola

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Stephen Tong

Mercy Hospital for Women

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nick Nicola

Walter and Eliza Hall Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge