Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where An Gong is active.

Publication


Featured researches published by An Gong.


Advanced Healthcare Materials | 2015

A Near Infrared Light Triggered Hydrogenated Black TiO2 for Cancer Photothermal Therapy

Wenzhi Ren; Yong Yan; Leyong Zeng; Zhenzhi Shi; An Gong; Peter Schaaf; Dong Wang; Jinshun Zhao; Baobo Zou; Hongsheng Yu; Ge Chen; Eric Michael Bratsolias Brown; Aiguo Wu

White TiO2 nanoparticles (NPs) have been widely used for cancer photodynamic therapy based on their ultraviolet light-triggered properties. To date, biomedical applications using white TiO2 NPs have been limited, since ultraviolet light is a well-known mutagen and shallow penetration. This work is the first report about hydrogenated black TiO2 (H-TiO2 ) NPs with near infrared absorption explored as photothermal agent for cancer photothermal therapy to circumvent the obstacle of ultraviolet light excitation. Here, it is shown that photothermal effect of H-TiO2 NPs can be attributed to their dramatically enhanced nonradiative recombination. After polyethylene glycol (PEG) coating, H-TiO2 -PEG NPs exhibit high photothermal conversion efficiency of 40.8%, and stable size distribution in serum solution. The toxicity and cancer therapy effect of H-TiO2 -PEG NPs are relative systemically evaluated in vitro and in vivo. The findings herein demonstrate that infrared-irradiated H-TiO2 -PEG NPs exhibit low toxicity, high efficiency as a photothermal agent for cancer therapy, and are promising for further biomedical applications.


Langmuir | 2013

Colorimetric response of dithizone product and hexadecyl trimethyl ammonium bromide modified gold nanoparticle dispersion to 10 types of heavy metal ions: understanding the involved molecules from experiment to simulation.

Yumin Leng; Li Yonglong; An Gong; Zheyu Shen; Liang Chen; Aiguo Wu

A new kind of analytical reagent, hexadecyl trimethyl ammonium bromide (CTAB), and dithizone product-modified gold nanoparticle dispersion, is developed for colorimetric response to 10 types of heavy metal ions (M(n+)), including Cr(VI), Cr(3+), Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+), and Pb(2+). The color change of the modified gold nanoparticle dispersion is instantaneous and distinct for Mn(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), Hg(2+), and Pb(2+). The color change results from the multiple reasons, such as electronic transitions, cation-π interactions, formation of coordination bonds, and M(n+)-induced aggregation of gold nanoparticles (AuNPs). The different combining capacity of heavy metal ions to modifiers results in the different broadening and red-shifting of the plasmon peak of modified AuNPs. In addition, Cr(VI), Cu(2+), Co(2+), Ni(2+), and Mn(2+) cause the new UV-vis absorption peaks in the region of 360-460 nm. The interactions between the modifiers and AuNPs, and between the modifiers and M(n+), are investigated by using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The results confirm that AuNPs are modified by CTAB and dithizone products through electrostatic interactions and Au-S bonds, respectively, and the M(n+)-N bonds form between M(n+) and dithizone products. Furthermore, the experimental and density functional theory calculated IR spectra prove that dithizone reacts with NaOH to produce C6H5O(-) and [SCH2N4](2-). The validation of this method is carried out by analysis of heavy metal ions in tap water.


Colloids and Surfaces B: Biointerfaces | 2015

Exploring a new SPION-based MRI contrast agent with excellent water-dispersibility, high specificity to cancer cells and strong MR imaging efficacy

Xuehua Ma; An Gong; Bin Chen; Jianjun Zheng; Tianxiang Chen; Zheyu Shen; Aiguo Wu

Advances in contrast agents have greatly enhanced the sensitivity of magnetic resonance imaging (MRI) technique for early diagnosis of cancer. However, the commercial superparamagnetic iron oxide nanoparticles (SPION)-based contrast agents synthesized by co-precipitation method are not monodisperse with irregular morphologies and ununiform sizes. Other reported SPION-based contrast agents synthesized by solvothermal method or thermal decomposition method are limited by the bad water-dispersibility and low specificity to cancer cells. Herein, we propose a new strategy for exploring SPION-based MRI contrast agents with excellent water-dispersibility and high specificity to cancer cells. The SPION was synthesized by a polyol method and then entrapped into albumin nanospheres (AN). After that, a ligand folic acid (FA) was conjugated onto the surface of the AN to construct a SPION-AN-FA composite. The transmission electron microscope (TEM) and dynamic light scattering (DLS) results indicate that the SPION-AN-FA has a spherical shape, a uniform size and an excellent water-dispersibility (polydispersity index (PDI) <0.05). The results of laser scanning confocal microscope (LSCM) and flow cytometry demonstrate that the SPION-AN-FA nanoparticles are highly specific to MCF-7 and SPC-A-1 cells due to the recognition of ligand FA and folate receptor α (FRα). The r2/r1 value of SPION-AN-FA is around 40, which is much higher than that of Resovist(®) indicating that our SPION-AN-FA has a stronger T2 shortening effect. The T2-weighted images of MCF-7 cells incubated with SPION-AN-FA are significantly darker than those of MCF-7 cells incubated with AN, indicating that our SPION-AN-FA has a strong MR imaging efficacy. In view of the excellent water-dispersibility, the high specificity to cancer cells and the strong MR imaging efficacy, our SPION-AN-FA can be used as a negative MR contrast agent.


Biomaterials | 2014

Stability enhanced polyelectrolyte-coated gold nanorod-photosensitizer complexes for high/low power density photodynamic therapy

Zhenzhi Shi; Wenzhi Ren; An Gong; Xinmei Zhao; Yuehong Zou; Eric Michael Bratsolias Brown; Xiaoyuan Chen; Aiguo Wu

Photodynamic therapy (PDT) is a promising treatment modality for cancer and other malignant diseases, however safety and efficacy improvements are required before it reaches its full potential and wider clinical use. Herein, we investigated a highly efficient and safe photodynamic therapy procedure by developing a high/low power density photodynamic therapy mode (high/low PDT mode) using methoxypoly(ethylene glycol) thiol (mPEG-SH) modified gold nanorod (GNR)-AlPcS4 photosensitizer complexes. mPEG-SH conjugated to the surface of simple polyelectrolyte-coated GNRs was verified using Fourier transform infrared spectroscopy; this improved stability, reduced cytotoxicity, and increased the encapsulation and loading efficiency of the nanoparticle dispersions. The GNR-photosensitizer complexes were exposed to the high/low PDT mode (high light dose = 80 mW/cm(2) for 0.5 min; low light dose = 25 mW/cm(2) for 1.5 min), and a high PDT efficacy leads to approximately 90% tumor cell killing. Due to synergistic plasmonic photothermal properties of the complexes, the high/low PDT mode demonstrated improved efficacy over using single wavelength continuous laser irradiation. Additionally, no significant loss in viability was observed in cells exposed to free AlPcS4 photosensitizer under the same irradiation conditions. Consequently, free AlPcS4 released from GNRs prior to cellular entry did not contribute to cytotoxicity of normal cells or impose limitations on the use of the high power density laser. This high/low PDT mode may effectively lead to a safer and more efficient photodynamic therapy for superficial tumors.


Journal of Materials Chemistry B | 2013

Biocompatible composite nanoparticles with large longitudinal relaxivity for targeted imaging and early diagnosis of cancer

Xuehua Ma; An Gong; Lingchao Xiang; Tianxiang Chen; Yuexia Gao; Xing-Jie Liang; Zheyu Shen; Aiguo Wu

Early diagnosis of cancer greatly increases the chances of successful treatment by radical resection. The sensitivity of magnetic resonance imaging (MRI) techniques for detecting early stage tumors can be increased with the assistance of a positive MRI contrast agent. However, the traditional positive MRI contrast agents, such as Gd-chelates and Gd-based inorganic nanoparticles, are often limited by their cytotoxicity and low specificity. Here, we propose a new design of MRI contrast agent based on gadolinium oxide nanocrystals (GON) for targeted imaging and cancer early diagnosis with good biocompatibility. The GON were prepared using a polyol method and then encapsulated into albumin nanoparticles (AN), which were cross-linked with glutaraldehyde and found to exhibit bright and stable autofluorescence without conjugation to any fluorescent agent. After that, a target molecule, folic acid (FA), was conjugated onto the surface of the GON-loaded AN (GON-AN) to construct a GON-AN-FA composite. The as-prepared nanoparticles are biocompatible and stable in serum. The results of MRI relaxation studies show that the longitudinal relaxivities (r1) of GON-AN (11.6 mM-1 s-1) and GON-AN-FA (10.8 mM-1 s-1) are much larger than those of traditional positive MRI contrast agents, such as Magnevist (3.8 mM-1 s-1). The results of cell viability assays indicate that GON-AN and GON-AN-FA are almost non-cytotoxic. Furthermore, the specificities of GON-AN and GON-AN-FA were evaluated with two kinds of cancer cells which overexpress folate receptor alpha (FRα). The results reinforce that the autofluorescent GON-AN-FA is able to target cancer cells via recognition of the ligand FA and the receptor FRα. Therefore, our autofluorescent GON-AN-FA possessing a large longitudinal relaxivity and good biocompatibility represents a significant advance for the targeted imaging and early diagnosis of cancer.


RSC Advances | 2013

Enhanced doxorubicin transport to multidrug resistant breast cancer cells via TiO2 nanocarriers

Wenzhi Ren; Leyong Zeng; Zheyu Shen; Lingchao Xiang; An Gong; Jichao(张继超) Zhang; Chengwen Mao; Aiguo(李爱国) Li; Tatjana Paunesku; Gayle E. Woloschak; Narayan S. Hosmane; Aiguo Wu

In order to overcome the multidrug resistance of breast cancer cells, doxorubicin was loaded onto TiO2 nanoparticles in which the electrostatic interactions hold the drug and the nanoparticles together. The anticancer activity of this nanocomposite was evaluated in multidrug resistant breast cancer cells. In nanocomposite treated MCF-7/ADM cells, drug accumulation increased with enhanced anticancer activity about 2.4 times compared to that of doxorubicin alone. The potential mechanism of enhanced drug accumulation is ascribed to the fact that the nanocomposite directly transports the drugs into cells via internalization, bypassing the P-glycoprotein mediated doxorubicin pumping system. Our results reinforce that the nanocomposite, as a pH controlled drug release system, could be used to overcome multidrug resistance of human breast cancer cells.


ACS Applied Materials & Interfaces | 2015

Neuropeptide Y Y1 receptors meditate targeted delivery of anticancer drug with encapsulated nanoparticles to breast cancer cells with high selectivity and its potential for breast cancer therapy.

Juan Li; Zheyu Shen; Xuehua Ma; Wenzhi Ren; Lingchao Xiang; An Gong; Tian Xia; Junming Guo; Aiguo Wu

By enabling nanoparticle-based drug delivery system to actively target cancer cells with high selectivity, active targeted molecules have attracted great attention in the application of nanoparticles for anticancer drug delivery. However, the clinical application of most active targeted molecules in breast cancer therapy is limited, due to the low expression of their receptors in breast tumors or coexpression in the normal and tumor breast tissues. Here, a neuropeptide Y Y1 receptors ligand PNBL-NPY, as a novel targeted molecule, is conjugated with anticancer drug doxorubicin encapsulating albumin nanoparticles to investigate the effect of Y1 receptors on the delivery of drug-loaded nanoparticles to breast cancer cells and its potential for breast cancer therapy. The PNBL-NPY can actively recognize and bind to the Y1 receptors that are significantly overexpressed on the surface of the breast cancer cells, and the drug-loaded nanoparticles are delivered directly into the cancer cells through internalization. This system is highly selective and able to distinguish the breast cancer cells from the normal cells, due to normal breast cells that express Y2 receptors only. It is anticipated that this study may provide a guidance in the development of Y1 receptor-based nanoparticulate drug delivery system for a safer and more efficient breast cancer therapy.


Colloids and Surfaces B: Biointerfaces | 2014

Improved double emulsion technology for fabricating autofluorescent microcapsules as novel ultrasonic/fluorescent dual-modality contrast agents

An Gong; Xuehua Ma; Lingchao Xiang; Wenzhi Ren; Zheyu Shen; Aiguo Wu

The aim of this study is to explore an improved double emulsion technology with in situ reaction of lysine (Lys) and glutaraldehyde (GA) for fabricating autofluorescent Lys-poly(lactic-co-glycolic acid)-GA (Lys-PLGA-GA) microcapsules as novel ultrasonic/fluorescent dual-modality contrast agents. Scanning electron microscope (SEM) and static light scattering (SLS) results show that 80% of the Lys-PLGA-GA microcapsules are larger than 1.0 μm and 90% of them are smaller than 8.9 μm. SEM and laser confocal scanning microscope (LCSM) data demonstrate that the structure of our Lys-PLGA-GA microcapsules is hollow. Compared with the FT-IR spectrum of PLGA microcapsules, a new peak at 1,644 cm(-1) in that of Lys-PLGA-GA microcapsules confirms the formed Schiff base in Lys-PLGA-GA microcapsules. LCSM images and fluorescence spectra show that our Lys-PLGA-GA microcapsules exhibit bright and stable autofluorescence without conjugation to any fluorescent agent, which can be ascribed to the n-π transitions of the CN bonds in the formed Schiff base. Our autofluorescent Lys-PLGA-GA microcapsules might have more wide applications than traditional fluorescent dyes because their excitation and emission spectra are both broad. The fluorescence intensity can also be tuned by the feeding amount of Lys and GA. The MTT assays reveal that the autofluorescent microcapsules are biocompatible. The results of fluorescent imaging in cells and in vitro ultrasonic imaging demonstrate the feasibility of our autofluorescent Lys-PLGA-GA microcapsules as ultrasonic/fluorescent dual-modality contrast agents. This novel ultrasonic/fluorescent dual-modality contrast agent might have potential for a variety of biological and medical applications.


Journal of Materials Chemistry C | 2014

A facile and in situ approach to fluorescent mesoporous silica and its applications in sensing and bioimaging

Huangxin Zhou; Xun Lv; Ling Zhang; An Gong; Aiguo Wu; Zhenhua Liang; Guihua Peng; Hengwei Lin

A facile approach for the synthesis of fluorescent mesoporous silica (FMS) is reported. The FMS could be achieved in situ through a mild hydrothermal reaction between easily obtained 3-(2-aminoethylamino) propyltrimethoxysilane functionalized SBA-15 and citric acid. This resulting material shows strong and stable fluorescence while preserving good mesoporous structures. The developed approach is simple and has a potential to be applied for scaled-up preparation. Importantly, the resulted FMS exhibit simultaneous Hg2+ detection and removal properties, low cytotoxicity and excellent cell imaging capability. These advantageous features demonstrate many potential applications such as in sensing and adsorption of contaminants, bioimaging, drug delivery and tracking.


Biomaterials | 2015

Inorganic photosensitizer coupled Gd-based upconversion luminescent nanocomposites for in vivo magnetic resonance imaging and near-infrared-responsive photodynamic therapy in cancers.

Ling'e Zhang; Leyong Zeng; Yuanwei Pan; Song Luo; Wenzhi Ren; An Gong; Xuehua Ma; Hongze Liang; Guangming Lu; Aiguo Wu

Collaboration


Dive into the An Gong's collaboration.

Top Co-Authors

Avatar

Aiguo Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wenzhi Ren

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zheyu Shen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Lingchao Xiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xuehua Ma

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Leyong Zeng

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Michael Bratsolias Brown

University of Wisconsin–Whitewater

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhenzhi Shi

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge