Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where An-Li Wang is active.

Publication


Featured researches published by An-Li Wang.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2009

Oxidative stress, DNA damage and antioxidant enzyme gene expression in the Pacific white shrimp, Litopenaeus vannamei when exposed to acute pH stress.

Wei-Na Wang; Jun Zhou; Peng Wang; Ting-Ting Tian; Ying Zheng; Yuan Liu; Wei-jun Mai; An-Li Wang

The ROS production, the percentage of dead and damaged haemocytes, the DNA Olive Tail Moment (OTM) value and the gene expression of manganese superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx) and thioredoxin (TRx), were studied in the Pacific white shrimp, Litopenaeus vannamei, when exposed to acute pH stress. The increased ROS production in haemocytes and the increased OTM value in both the haemocytes and the hepatopancreas cells suggest that oxidative damage occurred in shrimp exposed to pH 5.6 and pH 9.3, with apoptosis, mainly being associated with excess Ca(2+)influx and changes in cell viability. Acid and alkaline pH-induced DNA damage was time dependent in the haemocytes and the hepatopancreas cells. The concentration of intracellular free calcium [Ca(2+)] (i) after different pH treatments increased significantly over time, reaching its highest concentration after 12 h, but decreasing gradually to normal levels after 24 h. The [Ca(2+)] (i) content in shrimp cells when exposed to pH 9.3 and pH 5.6 for 12 h had increased by 58%-81%, compared with exposure to pH 7.4 (control). In addition, the gene expression of cMnSOD, CAT, GPx and TRx in the hepatopancreas of L. vannamei was induced by acid and alkaline pH stress, although there were differences in the expression response with respect to the duration of induction and the different pH treatments (acid or alkaline). Our results show that acidic or alkaline-induced oxidative stress may cause DNA damage, and cooperatively activate expression of CAT, GPx and TRx mRNA. Calcium ions appear to be important in mediating shrimp responses to pH stress.


Journal of Invertebrate Pathology | 2010

Expression of HSP60 and HSP70 in white shrimp, Litopenaeus vannamei in response to bacterial challenge.

Jun Zhou; Wei-Na Wang; Wen-Yin He; Yin Zheng; Lei Wang; Yu Xin; Yuan Liu; An-Li Wang

In the present study, cDNA encoding a heat shock protein 60 (LvHSP60) gene in Litopenaeus vannamei was cloned using a combination of homology and rapid amplification of cDNA end (RACE) methods. The full length of the LvHSP60 cDNA was found to be 2379bp, with a 1737bp open reading frame. The translated amino acid sequence consisted of 579 residues with a calculated molecular mass of 60.8kD and an isoelectronic point (pI) of 5.97. Comparison of the deduced amino acid sequence showed that it has high identity (85-89%) with HSP60/chaperonins from insects and mammals. Quantitative real-time PCR and Western blot analysis were carried out to investigate the expression patterns and distribution profiles of LvHSP60 before and after stimulation with the Gram-positive bacterium Staphylococcus aureus and the Gram-negative bacterium Vibrio alginolyticus. LvHSP60 mRNA was found to be both constitutive and inducible, and was highly expressed in haemocytes and almost all tissues examined, including muscle, stomach, heart, hepatopancreas and gill tissue, but it was less strongly expressed in the intestine. The expression analysis revealed that LvHSP60 was significantly up-regulated in the gills, hepatopancreas and haemocytes after bacterial challenge. Transcription of LvHSP70 was also induced in haemocytes and the hepatopancreas after different bacteria injection. Subsequent flow cytometry analysis showed that the concentration of Ca(2+) ions increased significantly within bacteria-challenged haemocytes by 1.5h after injection. The results indicate that LvHSP60 and LvHSP70 may play important roles in mediating the immune responses of L. vannamei to bacterial challenge, and that the Ca(2+) signalling transduction pathway may be involved in the initiation of the shrimps immune responses in early stages of infection.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2011

Oxidative stress, DNA damage and osmolality in the Pacific white shrimp, Litopenaeus vannamei exposed to acute low temperature stress

Jun Qiu; Wei-Na Wang; Li-juan Wang; Yu-Feng Liu; An-Li Wang

To evaluate the genotoxic, physiological and immunological effects of short-term acute low temperature stress on the Pacific white shrimp, Litopenaeus vannamei, we rapidly transferred shrimp from tanks at 23±2 °C to aquaria at the same temperature (controls) or 12±2 °C for 12 h. Changes in the shrimp hemocyte respiratory burst activity and DNA damage were examined during and after exposure to the temperature stress using flow cytometry and the comet assay, respectively. We also monitored changes in the total hemocyte count, malondialdehyde levels, total protein concentration and osmolality in shrimp plasma. The results show that hemocyte respiratory burst activity, malondialdehydes levels and hemocyte DNA damage in the plasma all increased significantly after exposure to 12±2 °C for 3 h. In contrast, total hemocyte count, total protein concentration and osmolality in the plasma decreased compared to the controls. We conclude that acute low temperature can induce oxidative stress, DNA damage, lipid peroxidation and changes in osmolality in L. vannamei.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2009

Glutathione S-transferase in the white shrimp Litopenaeus vannamei: Characterization and regulation under pH stress

Jun Zhou; Wei-Na Wang; An-Li Wang; Wen-Yin He; Qi-Ting Zhou; Yuan Liu; Jie Xu

We first expressed a Mu-class GST from white shrimp Litopenaeus vannamei in Escherichia coli, and then characterized the purified recombinant enzyme with respect to the effects of pH, temperature on its catalytic (1-chloro-2, 4-dinitrobenzene-glutathione conjugation) activity. We also analyzed its expression profile in L. vannamei tissues, and assessed changes in Mu-GST expression, GST activity profiles and mortality rates following exposure of white shrimp to low and high pH (5.6 and 9.3, respectively). Realtime-PCR analysis showed that Mu-GST transcripts were expressed in all examined L. vannamei tissues, but were most abundant in the hepatopancreas. At low pH Mu-GST transcript levels in the hepatopancreas were highest after 12 h, and then declined to their original levels after 24 h. After 12 h they were also upregulated in haemocytes, but downregulated in the gills, and unchanged in the stomach following exposure to pH stress. Western blot analyses confirmed that the Mu-GST protein was strongly expressed in the hepatopancreas after 12 h at low pH and remain unchanged in the stomach after exposure to pH stress. pH-Related changes in GST activities in the shrimp hepatopancreas were similar to those displayed by the Mu-GST mRNA and protein profiles. In addition, the mortality of L. vannamei was higher at high pH than at low pH. These results suggest that L. vannamei Mu-GST expression is stimulated by acidic pH and that it may play important roles in detoxification of xenobiotics and antioxidant defenses.


Aquatic Toxicology | 2015

Effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus).

Chang-Hong Cheng; Fang-Fang Yang; Ren-Zhi Ling; Shao-An Liao; Yu-Tao Miao; Chao-Xia Ye; An-Li Wang

Ammonia is one of major environmental pollutants in the freshwater aquatic system that affects the survival and growth of organisms. In the present study, we investigated the effects of ammonia exposure on apoptosis, oxidative stress and immune response in pufferfish (Takifugu obscurus). Fish were exposed to various concentrations of ammonia (0, 1.43, 3.57, 7.14mM) for 72h. The date showed that ammonia exposure could induce intracellular reactive oxygen species (ROS), interrupt intracellular Ca(2+) (cf-Ca(2+)) homeostasis, and subsequently lead to DNA damage and cell apoptosis. To test the apoptotic pathway, the expression patterns of some key apoptotic related genes including P53, Bax Bcl2, Caspase 9, Caspase 8 and Caspase 3 in the liver were examined. The results showed that ammonia stress could change these genes transcription, associated with increasing of cell apoptosis, suggesting that the P53-Bax-Bcl2 pathway and caspase-dependent apoptotic pathway could be involved in cell apoptosis induced by ammonia stress. In addition, ammonia stress could induced up-regulation of inflammatory cytokines (BAFF, TNF-α, IL-6 and IL-12) transcription, indicating that innate immune system play important roles in ammonia-induced toxicity in fish. Furthermore, the gene expressions of antioxidant enzymes (Mn-SOD, CAT, GPx, and GR) and heat shock proteins (HSP90 and HSP70) in the liver were induced by ammonia stress, suggesting that antioxidant system and heat shock proteins tried to protect cells from oxidative stress and apoptosis induced by ammonia stress. Our results will be helpful to understand the mechanism of aquatic toxicology induced by ammonia in fish.


Fish & Shellfish Immunology | 2013

Trascriptome analysis of the Pacific white shrimp Litopenaeus vannamei exposed to nitrite by RNA-seq

Hui Guo; Chao-Xia Ye; An-Li Wang; Jian-An Xian; Shao-An Liao; Yu-Tao Miao; Shengpeng Zhang

In the present study, transcriptome of nitrite-exposed Litopenaeus vannamei was performed using a newly developed high-throughput sequencing technology (Illumina RNA-seq). As many as 42,336 unigenes were generated with 561 bp of average length and 736 bp of unigene N50 after filtering and assembly. These unigenes from the de novo assembly were further annotated using BLAST and BLAST2GO softwares. A total of 23,532 unigenes were unambiguous alignments to the reference when BLAST against non-redundant protein sequence (Nr), non-redundant nucleotide (Nt), Swiss-Prot, Gene Ontology database (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases available at NCBI. Numerous candidate genes associated with immune response, detoxification, apoptosis pathway were identified. Ten candidate genes related to immune responses and apoptosis were selected for validating the results of assembly and annotation by real-time quantitative PCR. Results revealed that the expressions of all these ten genes were up-regulated after nitrite exposure. Combining to our previous study, we speculate that all these selected genes may be involved in the response to nitrite stress. The study shows a systematic overview of the transcriptome analysis in L. vannamei, and provides valuable gene information for studying molecular mechanisms under nitrite exposure.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2009

Effects of cadmium on respiratory burst, intracellular Ca2+ and DNA damage in the white shrimp Litopenaeus vannamei.

Ming Chang; Wei-Na Wang; An-Li Wang; Ting-Ting Tian; Peng Wang; Ying Zheng; Yuan Liu

Acute effects of heavy metal ions on shrimp have been an area of intense study worldwide. However, the molecular mechanism by which cadmium-induced injury occurs remains largely unclear, and methods for mitigating toxicity in vivo have rarely been reported. In this study, the changes in respiratory burst and intracellular free calcium in haemocytes of pacific white shrimp, Litopenaeus vannamei, after exposure to Cd(2+) (CdCl(2)) were examined using flow cytometry. Meanwhile, DNA damage and repair in haemocytes and hepatopancreas cells were studied using the comet assay. Respiratory burst generation, intracellular Ca(2+) concentration ([Ca(2+)]i) and DNA damage in haemocytes and hepatopancreas cells all exhibited a dose-dependent increase and a time-dependent change after treatment with Cd(2+) compared with controls. These results indicate that Cd can induce oxidative stress and DNA damage in the shrimp L. vannamei. Moreover, the results also demonstrate that these parameters can be used as sensitive indicators of exposure to this genotoxicant.


Fish & Shellfish Immunology | 2011

Transcriptional regulation of extracellular copper zinc superoxide dismutase from white shrimp Litopenaeus vannamei following Vibrio alginolyticus and WSSV infection

Jianxiao Tian; Juan Chen; Dan Jiang; Shaoan Liao; An-Li Wang

The cDNA encoding an extracellular copper zinc superoxide dismutase (LvECSOD) was cloned from the hepatopancreas of white shrimp Litopenaeus vannamei. It consisted of 915 bp nucleotides with an open reading frame corresponding to a deduced protein of 178 amino acids. The LvECSOD contains a putative signal peptide of 16 amino acids, two potential N-linked glycosylation sites (N(115)GTA and N(135)ITG) and a copper zinc superoxide dismutase family signature sequence (G(162)NAGaRvACctI(173)). It was found that four copper binding sites, four zinc binding sites and two cysteines involving in the formation of the disulfide bridge were conserved in the protein. LvECSOD shared 33-58% identity to ECSODs from other organisms. Expression analysis revealed that LvECSOD mRNA was widely distributed in all the tissues examined. When the shrimp challenged with Vibrio alginolyticus or white spot syndrome virus (WSSV), expression of LvECSOD mRNA in the hepatopancreas and hemocytes was mediated responsively. Our results suggested that LvECSOD was implicated in the immune response induced by V. alginolyticus and WSSV.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2010

Phagocytic activity, respiratory burst, cytoplasmic free-Ca2+ concentration and apoptotic cell ratio of haemocytes from the black tiger shrimp, Penaeus monodon under acute copper stress.

Jian-An Xian; An-Li Wang; Chao-Xia Ye; Xiao-Dan Chen; Wei-Na Wang

The aim of this study was to investigate the cellular toxicity of copper-induced injury to the black tiger shrimp Penaeus monodon. The 24h, 48h, 72h and 96h LC(50) (median lethal concentration) of Cu(2+) on P. monodon (11.63+/-1.14g) were found to be 3.49, 1.54, 0.73 and 0.40mgL(-1), respectively. Total haemocyte count (THC), phagocytic activity, respiratory burst (RB), cytoplasmic free-Ca(2+) (cf-Ca(2+)) concentration and apoptotic cell ratio of shrimp were determined after exposure to different concentrations of Cu(2+) (0, 0.05, 0.5, 1.5 and 3.5mgL(-1)) for 0, 6, 12, 24 and 48h. There was no significant effect on the analytic indicator of shrimp exposed to 0.05mgL(-1) Cu(2+). THC decreased after Cu-exposure to 0.5mgL(-1) for 48h, 1.5mgL(-1) for 24h and 3.5mgL(-1) for 12h. Phagocytic activity decreased in P. monodon following 48h exposure to 3.5mgL(-1) Cu(2+). RB was induced after 6h exposure to 0.5, 1.5 and 3.5mgL(-1) Cu(2+). cf-Ca(2+) concentration increased after 48h exposure to 0.5mgL(-1) Cu(2+), and 12h exposure to 1.5 and 3.5mgL(-1) Cu(2+). The percentage of apoptotic cells increased to 9.5%, 16.3% and 18.6% respectively following 48h exposure to 0.5, 1.5 and 3.5mgL(-1) Cu(2+). These results indicate that Cu can induce oxidative stress, elevation of cf-Ca(2+) and cell apoptosis, and inhibit phagocytic activity in the shrimp P. monodon, and the lethal injury of Cu(2+) to P. monodon may be mainly due to the sharp reduction of THC caused by ROS-induced apoptosis.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2013

Apoptosis of tiger shrimp (Penaeus monodon) haemocytes induced by Escherichia coli lipopolysaccharide.

Jian-An Xian; Yu-Tao Miao; Bin Li; Hui Guo; An-Li Wang

This study was aimed at investigating the toxicity mechanism of lipopolysaccharide (LPS) on Penaeus monodon haemocytes at a cellular level. Reactive oxygen species (ROS) production, nitric oxide (NO) production, non-specific esterase activity, cytoplasmic free-Ca(2+) (CF-Ca(2+)) concentration, DNA damaged cell ratio and apoptotic cell ratio of in vitro LPS-treated haemocytes were measured by flow cytometry. Two concentrations of Escherichia coli LPS (5 and 10 μg mL(-1)) were used. Results showed that ROS production, NO production and CF-Ca(2+) concentration were significantly induced in the LPS-treated haemocytes. Ratio of DNA damaged cell and apoptotic cell increased caused by LPS, while esterase activity increased at the initial 60 min and dropped later. The initial increase in esterase activity suggested that LPS activated the release of esterase, and the later decrease might result from apoptosis. These results indicated that LPS would induce oxidative stress on shrimp haemocytes, and cause Ca(2+) release, DNA damage and subsequently cell apoptosis. This process of ROS/RNS-induced Ca(2+)-mediated apoptosis might be one of the toxicity mechanisms of LPS on shrimp haemocytes.

Collaboration


Dive into the An-Li Wang's collaboration.

Top Co-Authors

Avatar

Wei-Na Wang

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Chao-Xia Ye

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Jian-An Xian

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Shao-An Liao

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Yu-Tao Miao

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Yuan Liu

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Chang-Hong Cheng

Chinese Academy of Fishery Sciences

View shared research outputs
Top Co-Authors

Avatar

Ru-Yong Sun

South China Normal University

View shared research outputs
Top Co-Authors

Avatar

Hui Guo

Guangdong Ocean University

View shared research outputs
Top Co-Authors

Avatar

Jianmin Ye

South China Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge