Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana B. Campelo is active.

Publication


Featured researches published by Ana B. Campelo.


Microbiology | 2002

The candicidin gene cluster from Streptomyces griseus IMRU 3570

Ana B. Campelo; José A. Gil

A 205 kb DNA region from Streptomyces griseus IMRU 3570, including the candicidin biosynthetic gene cluster, was cloned and partially sequenced. Analysis of the sequenced DNA led to identification of genes encoding part of a modular polyketide synthase (PKS), genes for thioesterase, macrolactone ring modification, mycosamine biosynthesis and attachment to the macrolide ring, candicidin export and regulatory proteins. It represents the first extensive genetic characterization of an aromatic polyene macrolide antibiotic biosynthetic gene cluster. Of particular interest is the presence of the CanP1 loading domain (the first described as responsible for the activation of an aromatic starter unit) and the polypeptide CanP3 (carrying modules for the formation of five out of seven conjugated double bonds). Disruption of the pabAB gene that encodes the starter unit of candicidin abolished its production [which was restored when exogenous p-aminobenzoic acid (PABA) was supplied to the culture] and resulted in an enhanced production of another antifungal compound that is barely detected in the wild-type.


Carbohydrate Research | 2008

Structure of the high-molecular weight exopolysaccharide isolated from Lactobacillus pentosus LPS26

Miguel A. Rodríguez-Carvajal; J. Ignacio Sánchez; Ana B. Campelo; Beatriz Martínez; Ana Rodríguez; Antonio M. Gil-Serrano

The strain Lactobacillus pentosus LPS26 produces a capsular polymer composed of a high- (2.0x10(6)Da) (EPS A) and a low-molecular mass (2.4x10(4)Da) (EPS B) polysaccharide when grown on semi-defined medium containing glucose as the carbon source. The structure of EPS A and its deacetylated form has been determined by monosaccharide and methylation analysis as well as by 1D/2D NMR studies ((1)H and (13)C). We conclude that EPS A is a charged heteropolymer, with a composition of D-glucose, D-glucuronic acid and L-rhamnose in a molar ratio 1:2:2. The repeating unit is a pentasaccharide with two O-acetyl groups at O-4 of the 3-substituted alpha-D-glucuronic acid and at O-2 of the 3-substituted beta-L-rhamnose, respectively. -->4)-alpha-D-Glcp-(1-->3)-alpha-D-GlcpA4Ac-(1-->3)-alpha-L-Rhap-(1-->4)-alpha-D-GlcpA-(1-->3)-beta-L-Rhap2Ac-(1--> This unbranched structure is not common in EPSs produced by Lactobacilli. Moreover, the presence of acetyl groups in the structure is an unusual feature which has only been reported in L. sake 0-1 [Robijn et al. Carbohydr. Res., 1995, 276, 117-136].


Applied and Environmental Microbiology | 2001

Construction of a Xylanase-Producing Strain of Brevibacterium lactofermentum by Stable Integration of an Engineered xysA Gene from Streptomyces halstedii JM8

Sirin A. I. Adham; Ana B. Campelo; Angelina Ramos; José A. Gil

ABSTRACT A xylanolytic strain of Brevibacteriumlactofermentum containing theStreptomyceshalstedii His-taggedxysA gene was generated. The new strain contains DNA derived from S. halstedii, expresses xylanolytic activity, and was obtained by an integrative process mediated by a conjugative plasmid targeted to a dispensable chromosomal region located downstream from the essential cell division geneftsZ. The His-tagged Xys1 enzyme was constitutively expressed under the control of the kan promoter from Tn5 and was easily purified by use of Ni-nitrilotriacetic acid-agarose. The new strain is stable for more than 200 generations, lacks any known antibiotic resistance gene, and does not need any selective pressure to maintain the integrated gene. This strategy can be used to integrate any gene into theB. lactofermentum chromosome and to maintain it stably without the use of antibiotics for selection.


International Journal of Food Microbiology | 2009

Contribution of the CesR-regulated genes llmg0169 and llmg2164-2163 to Lactococcus lactis fitness

Clara Roces; Ana B. Campelo; Patrick Veiga; Joao Coelho Pinto; Ana Rodríguez; Beatriz Martínez

Lactococcus lactis is one of the main components of the starter cultures used in cheese manufacture. As starter, L. lactis must tolerate harsh conditions encountered either during their production in bulk quantities or during dairy products processing. To face these hostile conditions, bacteria monitor the environment and respond by modifying gene expression appropriately. Previous transcriptomic studies showed that the two component system CesSR is the main pathway that triggers the cell envelope stress response in L. lactis treated with lactococcin 972 (Lcn972), a cell wall synthesis inhibiting bacteriocin. Among the CesR-regulated genes, llmg0169 and the operon llmg2164-2163, encoding proteins of unknown function, are among the highest up-regulated genes after activation of CesSR. In this study, we have assessed the contribution of these genes to the survival of L. lactis to different technologically-relevant stresses. Overexpressing and knock-out mutants of the genes were generated and their viability to low pH, heat, freeze-drying, presence of NaCl, cell wall antimicrobials and lytic phages attack was compared to the wild type strain. The genes llmg0169 and llmg2164-2163 contributed differently to L. lactis fitness. L. lactis Deltallmg0169 was very sensitive to heat treatment while L. lactis Deltallmg2164 was more sensitive to NaCl. Absence of both genes also compromised viability at low pH. On the contrary, higher expression levels of llmg0169 and llmg2164-2163, up to 26- and 14-fold increase determined by qRT-PCR, respectively, did not enhance L. lactis survival in any of the above stressful conditions (heat, pH and NaCl) or after freeze-drying. All the mutants displayed a similar phage susceptibility profile. Overexpression of llmg2164-2163 seemed to specifically protect L. lactis against the bacteriocin Lcn972 but not against other cell wall active antimicrobials. Based on our phenotypic analysis, the investigated genes are required to mount a proper response to guarantee survival of L. lactis under technologically-relevant stresses and their functionality could be a useful marker to select robust dairy starters.


Applied and Environmental Microbiology | 2011

The Lcn972 Bacteriocin-Encoding Plasmid pBL1 Impairs Cellobiose Metabolism in Lactococcus lactis

Ana B. Campelo; Paula Gaspar; Clara Roces; Ana Rodríguez; Jan Kok; Oscar P. Kuipers; Ana Rute Neves; Beatriz Martínez

ABSTRACT pBL1 is a Lactococcus lactis theta-replicating 10.9-kbp plasmid that encodes the synthetic machinery of the bacteriocin Lcn972. In this work, the transcriptomes of exponentially growing L. lactis strains with and without pBL1 were compared. A discrete response was observed, with a total of 10 genes showing significantly changed expression. Upregulation of the lactococcal oligopeptide uptake (opp) system was observed, which was likely linked to a higher nitrogen demand required for Lcn972 biosynthesis. Strikingly, celB, coding for the membrane porter IIC of the cellobiose phosphoenolpyruvate-dependent phosphotransferase system (PTS), and the upstream gene llmg0186 were downregulated. Growth profiles for L. lactis strains MG1363, MG1363/pBL1, and MG1363 ΔcelB grown in chemically defined medium (CDM) containing cellobiose confirmed slower growth of MG1363/pBL1 and MG1363 ΔcelB, while no differences were observed with growth on glucose. The presence of pBL1 shifted the fermentation products toward a mixed acid profile and promoted substantial changes in intracellular pool sizes for glycolytic intermediates in cells growing on cellobiose as determined by high-pressure liquid chromatography (HPLC) and nuclear magnetic resonance (NMR). Overall, these data support the genetic evidence of a constriction in cellobiose uptake. Notably, several cell wall precursors accumulated, while other UDP-activated sugar pools were lower, which could reflect rerouting of precursors toward the production of structural or storage polysaccharides. Moreover, cells growing slowly on cellobiose and those lacking celB were more tolerant to Lcn972 than cellobiose-adapted cells. Thus, downregulation of celB could help to build up a response against the antimicrobial activity of Lcn972, enhancing self-immunity of the producer cells.


Microbial Cell Factories | 2014

A bacteriocin gene cluster able to enhance plasmid maintenance in Lactococcus lactis

Ana B. Campelo; Clara Roces; M. Luz Mohedano; Paloma López; Ana Rodríguez; Beatriz Martínez

BackgroundLactococcus lactis is widely used as a dairy starter and has been extensively studied. Based on the acquired knowledge on its physiology and metabolism, new applications have been envisaged and there is an increasing interest of using L. lactis as a cell factory. Plasmids constitute the main toolbox for L. lactis genetic engineering and most rely on antibiotic resistant markers for plasmid selection and maintenance. In this work, we have assessed the ability of the bacteriocin Lactococcin 972 (Lcn972) gene cluster to behave as a food-grade post-segregational killing system to stabilize recombinant plasmids in L. lactis in the absence of antibiotics. Lcn972 is a non-lantibiotic bacteriocin encoded by the 11-kbp plasmid pBL1 with a potent antimicrobial activity against Lactococcus.ResultsAttempts to clone the full lcn972 operon with its own promoter (P972), the structural gene lcn972 and the immunity genes orf2-orf3 in the unstable plasmid pIL252 failed and only plasmids with a mutated promoter were recovered. Alternatively, cloning under other constitutive promoters was approached and achieved, but bacteriocin production levels were lower than those provided by pBL1. Segregational stability studies revealed that the recombinant plasmids that yielded high bacteriocin titers were maintained for at least 200 generations without antibiotic selection. In the case of expression vectors such as pTRL1, the Lcn972 gene cluster also contributed to plasmid maintenance without compromising the production of the fluorescent mCherry protein. Furthermore, unstable Lcn972 recombinant plasmids became integrated into the chromosome through the activity of insertion sequences, supporting the notion that Lcn972 does apply a strong selective pressure against susceptible cells. Despite of it, the Lcn972 gene cluster was not enough to avoid the use of antibiotics to select plasmid-bearing cells right after transformation.ConclusionsInserting the Lcn972 cluster into segregational unstable plasmids prevents their lost by segregation and probable could be applied as an alternative to the use of antibiotics to support safer and more sustainable biotechnological applications of genetically engineered L. lactis.


Scientific Reports | 2017

Low-level predation by lytic phage phiIPLA-RODI promotes biofilm formation and triggers the stringent response in Staphylococcus aureus

Lucía Fernández; Silvia González; Ana B. Campelo; Beatriz Martínez; Ana Rodriguez; Pilar García

An important lesson from the war on pathogenic bacteria has been the need to understand the physiological responses and evolution of natural microbial communities. Bacterial populations in the environment are generally forming biofilms subject to some level of phage predation. These multicellular communities are notoriously resistant to antimicrobials and, consequently, very difficult to eradicate. This has sparked the search for new therapeutic alternatives, including phage therapy. This study demonstrates that S. aureus biofilms formed in the presence of a non-lethal dose of phage phiIPLA-RODI exhibit a unique physiological state that could potentially benefit both the host and the predator. Thus, biofilms formed under phage pressure are thicker and have a greater DNA content. Also, the virus-infected biofilm displayed major transcriptional differences compared to an untreated control. Significantly, RNA-seq data revealed activation of the stringent response, which could slow down the advance of the bacteriophage within the biofilm. The end result would be an equilibrium that would help bacterial cells to withstand environmental challenges, while maintaining a reservoir of sensitive bacterial cells available to the phage upon reactivation of the dormant carrier population.


Applied and Environmental Microbiology | 2017

The Behavior of Staphylococcus aureus Dual-Species Biofilms Treated with Bacteriophage phiIPLA-RODI Depends on the Accompanying Microorganism

Silvia González; Lucía Fernández; Ana B. Campelo; Diana Gutiérrez; Beatriz Martínez; Ana Rodríguez; Pilar García

ABSTRACT The use of bacteriophages as antimicrobials against pathogenic bacteria offers a promising alternative to traditional antibiotics and disinfectants. Significantly, phages may help to remove biofilms, which are notoriously resistant to commonly used eradication methods. However, the successful development of novel antibiofilm strategies must take into account that real-life biofilms usually consist of mixed-species populations. Within this context, this study aimed to explore the effectiveness of bacteriophage-based sanitation procedures for removing polymicrobial biofilms from food industry surfaces. We treated dual-species biofilms formed by the food pathogenic bacterium Staphylococcus aureus in combination with Lactobacillus plantarum, Enterococcus faecium, or Lactobacillus pentosus with the staphylococcal phage phiIPLA-RODI. Our results suggest that the impact of bacteriophage treatment on S. aureus mixed-species biofilms varies depending on the accompanying species and the infection conditions. For instance, short treatments (4 h) with a phage suspension under nutrient-limiting conditions reduced the number of S. aureus cells in 5-h biofilms by ∼1 log unit without releasing the nonsusceptible species. In contrast, longer infection periods (18 h) with no nutrient limitation increased the killing of S. aureus cells by the phage (decrease of up to 2.9 log units). However, in some cases, these conditions promoted the growth of the accompanying species. For example, the L. plantarum cell count in the treated sample was up to 2.3 log units higher than that in the untreated control. Furthermore, phage propagation inside dual-species biofilms also depended greatly on the accompanying species, with the highest rate detected in biofilms formed by S. aureus-L. pentosus. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) also showed changes in the three-dimensional structures of the mixed-species biofilms after phage treatment. Altogether, the results presented here highlight the need to study the impact of phage therapy on microbial communities that reflect a more realistic setting. IMPORTANCE Biofilms represent a major source of contamination in industrial and hospital settings. Therefore, developing efficient strategies to combat bacterial biofilms is of the utmost importance from medical and economic perspectives. Bacteriophages have shown potential as novel antibiofilm agents, but further research is still required to fully understand the interactions between phages and biofilm-embedded bacteria. The results presented in this study contribute to achieving a better understanding of such interactions in a more realistic context, considering that most biofilms in the environment consist of mixed-species populations.


Antimicrobial Agents and Chemotherapy | 2017

Downregulation of autolysin-encoding genes by phage-derived lytic proteins inhibits biofilm formation in Staphylococcus aureus

Lucía Fernández; Silvia González; Ana B. Campelo; Beatriz Martínez; Ana Rodríguez; Pilar García

ABSTRACT Phage-derived lytic proteins are a promising alternative to conventional antimicrobials. One of their most interesting properties is that they do not readily select for resistant strains, which is likely due to the fact that their targets are essential for the viability of the bacterial cell. Moreover, genetic engineering allows the design of new “tailor-made” proteins that may exhibit improved antibacterial properties. One example of this is the chimeric protein CHAPSH3b, which consists of a catalytic domain from the virion-associated peptidoglycan hydrolase of phage vB_SauS-phiIPLA88 (HydH5) and the cell wall binding domain of lysostaphin. CHAPSH3b had previously shown the ability to kill Staphylococcus aureus cells. Here, we demonstrate that this lytic protein also has potential for the control of biofilm-embedded S. aureus cells. Additionally, subinhibitory doses of CHAPSH3b can decrease biofilm formation by some S. aureus strains. Transcriptional analysis revealed that exposure of S. aureus cells to this enzyme leads to the downregulation of several genes coding for bacterial autolysins. One of these proteins, namely, the major autolysin AtlA, is known to participate in staphylococcal biofilm development. Interestingly, an atl mutant strain did not display inhibition of biofilm development when grown at subinhibitory concentrations of CHAPSH3b, contrary to the observations made for the parental and complemented strains. Also, deletion of atl led to low-level resistance to CHAPSH3b and the endolysin LysH5. Overall, our results reveal new aspects that should be considered when designing new phage-derived lytic proteins aimed for antimicrobial applications.


Antimicrobial Agents and Chemotherapy | 2012

The putative lactococcal extracytoplasmic function anti-sigma factor llmg2447 determines resistance to the cell wall-active bacteriocin lcn972

Clara Roces; Verónica Pérez; Ana B. Campelo; Diego Blanco; Jan Kok; Oscar P. Kuipers; Ana Rodríguez; Beatriz Martínez

ABSTRACT Lactococcin 972 (Lcn972) is a cell wall-active bacteriocin that inhibits cell wall biosynthesis in Lactococcus lactis. In this work, the transcriptomes of the Lcn972-resistant (Lcnr) mutant L. lactis D1 and its parent strain were compared to identify factors involved in Lcn972 resistance. Upregulated genes included members of the cell envelope stress (CesSR) regulon, the penicillin-binding protein pbpX gene and gene llmg2447, which may encode a putative extracytoplasmic function (ECF) anti-sigma factor. The gene llmg2447 is located downstream of the nonfunctional ECF gene sigXpseudo. Nisin-controlled expression of llmg2447 led to high Lcn972 resistance in L. lactis, with no cross-resistance to other cell wall-active antimicrobials. Upregulation of llmg2447 in L. lactis D1 (Lcnr) was linked to the integration of insertion element IS981 into the llmg2447 promoter region, replacing the native −35 box and activating the otherwise silent promoter P2447. This is the first example of an orphan ECF anti-sigma factor involved in bacteriocin resistance. This new role in neutralizing cell wall-active compounds (e.g., Lcn972) could have evolved from a putative primary function of Llmg2447 in sensing cell envelope stress.

Collaboration


Dive into the Ana B. Campelo's collaboration.

Top Co-Authors

Avatar

Beatriz Martínez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clara Roces

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Pilar García

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Silvia González

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana Gutiérrez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucía Fernández

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Verónica Pérez

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge