Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana B. Gaspar is active.

Publication


Featured researches published by Ana B. Gaspar.


Journal of the American Chemical Society | 2008

Does the solid-liquid crystal phase transition provoke the spin-state change in spin-crossover metallomesogens?

Maksym Seredyuk; Ana B. Gaspar; Vadim Ksenofontov; Yury G. Galyametdinov; Joachim Kusz; P. Gütlich

Three types of interplay/synergy between spin-crossover (SCO) and liquid crystalline (LC) phase transitions can be predicted: (i) systems with coupled phase transitions, where the structural changes associated to the Cr<-->LC phase transition drives the spin-state transition, (ii) systems where both transitions coexist in the same temperature region but are not coupled, and (iii) systems with uncoupled phase transitions. Here we present a new family of Fe(II) metallomesogens based on the ligand tris[3-aza-4-((5-C(n))(6-R)(2-pyridyl))but-3-enyl]amine, with C(n) = hexyloxy, dodecyloxy, hexadecyloxy, octadecyloxy, eicosyloxy, R = hydrogen or methyl (C(n)-trenH or C(n)-trenMe), which affords examples of systems of types i, ii, and iii. Self-assembly of the ligands C(n)-trenH and C(n)-trenMe with Fe(A)2 x xH2O salts have afforded a family of complexes with general formula [Fe(C(n)-trenR)](A)2 x sH2O (s > or = 0), with A = ClO4(-), F-, Cl-, Br- and I-. Single-crystal X-ray diffraction measurements have been performed on two derivatives of this family, named as [Fe(C6-trenH)](ClO4)2 (C(6)-1) and [Fe(C6-trenMe)](ClO4)2 (C(6)-2), at 150 K for C(6)-1 and at 90 and 298 K for C(6)-2. At 150 K, C(6)-1 displays the triclinic space group P, whereas at 90 and at 298 K C(6)-2 adopts the monoclinic P2(1)/c space group. In both compounds the iron atoms adopt a pseudo-octahedral symmetry and are surrounded by six nitrogen atoms belonging to imino groups and pyridines of the ligands C(n)-trenH and C(n)-trenMe. The average Fe(II)-N bonds (1.963(2) A) at 150 K denote that C(6)-1 is in the low-spin (LS) state. For C(6)-2 the average Fe(II)-N bonds (2.007(1) A) at 90 K are characteristic of the LS state, while at 298 K they are typical for the high-spin (HS) state (2.234(3) A). Compound C(6)-1 and [Fe(C18-trenH)](ClO4)2 (C(18)-1) adopts the LS state in the temperature region between 10 and 400 K, while compound C(6)-2 and [Fe(Cn-trenMe)](ClO4)2 (n = 12 (C(12)-2), 18 (C(18)-2)) exhibit spin crossover behavior at T(1/2) centered around 140 K. The thermal spin transition is accompanied by a pronounced change of color from dark red (LS) to orange (HS). The light-induced excited spin state trapping (LIESST) effect has been investigated in compounds C(6)-2, C(12)-2 and C(18)-2. The T(1/2)LIESST is 56 K (C(6)-2), 48 K (C(16)-2), and 56 K (C(18)-2). On the basis of differential scanning calorimetry, optical polarizing microscopy, and X-ray diffraction findings for C(18)-1, C(12)-2, and C(18)-2 at high temperature a smectic mesophase SX has been identified with layered structures similar to C(6)-1 and C(6)-2. The compounds [Fe(C(n)-trenH)](Cl)2 x sH2O (n = 16 (C(16)-3, s = 3.5, C(16)-4, s = 0.5, C(16)-5, s = 0), 18 (C(18)-3, s = 3.5, C(18)-4, s = 0.5, C(18)-5, s = 0), 20 (C(20)-3, s = 3.5, C(20)-4, s = 0.5, C(20)-5, s = 0)) and [Fe(C18-tren)](F)2 x sH2O (C(18)-6, s = 3.5, C(18)-7, s = 0) show a very particular spin-state change, while [Fe(C18-tren)](Br)2 x 3H2O (C(18)-8) together with [Fe(C18-tren)](I)2 (C(18)-9) are in the LS state (10-400 K) and present mesomorphic behavior like that observed for the complexes C(18)-1, C(12)-2, and C(18)-2. In compounds C(n)-3 50% of the Fe(II) ions undergo spin-state change at T(1/2) = 375 K induced by releasing water, and in partially dehydrated compounds (s = 0.5) the Cr-->SA phase transition occurs at 287 K (C(16)-4), 301 K (C(18)-4) and 330 K (C(20)-4). For the fully dehydrated materials C(n)-5 50% of the Fe(II) ions are in the HS state and show paramagnetic behavior between 10 and 400 K. In the partially dehydrated C(n)-4 the spin transition is induced by the change of the aggregate state of matter (solid<-->liquid crystal). For compound C(18)-6 the full dehydration to C(18)-7 provokes the spin-state change of nearly 50% of the Fe(II) ions. The compounds C(n)-3 and C(18)-6 are dark purple in the LS state and become light purple-brown when 50% of the Fe(II) atoms are in the HS state.


Chemical Physics Letters | 2003

Coexistence of spin-crossover and antiferromagnetic coupling phenomena in the novel dinuclear Fe(II) complex [Fe(dpa)(NCS)2]2bpym

Ana B. Gaspar; Vadim Ksenofontov; José Antonio Real; P. Gütlich

Abstract The iron(II) spin crossover dinuclear compound [Fe(dpa)(NCS) 2 ] 2 bpym where dpa = 2,2 ′ -dipyridylamine and bpym = 2,2 ′ -bipyrimidine has been synthesized and characterized. Variable-temperature magnetic susceptibility and 57 Fe Mossbauer spectroscopy data provide evidence for a rather complete and continuous S=2 ( HS )↔S=0 (LS) spin-crossover behavior taking place in the temperature range 400–50 K (T 1/2 =245 K ) without the presence of a plateau at 50% of conversion. The absence of such plateau, which is characteristic of all dinuclear compounds so far studied, is interpreted in terms of synergetic effect between intramolecular and intermolecular interactions.


Journal of Physics: Condensed Matter | 2004

Pressure effect studies in molecular magnetism

P. Gütlich; Ana B. Gaspar; Vadim Ksenofontov; Yann Garcia

We report on temperature dependent magnetic susceptibility and Mossbauer effect studies of the influence of hydrostatic pressure (up to 1.2 GPa) on dynamic electronic structure phenomena in 3d transition metal coordination compounds. The systems under investigation are mononuclear spin crossover compounds of iron (II) and chromium (II), dinuclear complexes of iron (II) exhibiting coexistence of intramolecular antiferromagnetic coupling and thermal spin crossover, 1D, 2D and 3D polynuclear spin crossover complexes of iron (II), a valence tautomeric system of cobalt (II) showing a thermal transition from a high spin [CoII (semiquinone)] to a low spin [CoII (catecholate)] species on lowering the temperature and a photomagnetically active Prussian blue type system with temperature- and pressure induced electron transfer. It is demonstrated that pressure effect studies can be very helpful in elucidating the mechanisms and cooperative interactions of solid state compounds with electronic bistability.


Hyperfine Interactions | 2003

Interplay of Antiferromagnetic Coupling and Spin Crossover in Dinuclear Iron(II) Complexes

Ana B. Gaspar; Vadim Ksenofontov; H. Spiering; S. Reiman; José A. Real; P. Gütlich

This article reports on the study of the interplay between magnetic coupling and spin transition in 2,2′-bipyrimidine (bpym)-bridged iron(II) dinuclear compounds. Coexistence of both phenomena has been observed in [Fe(bpym)(NCS)2]2bpym, [Fe(bpym)(NCSe)2]2bpym and [Fe(bt)(NCS)2]2bpym (bpym = 2,2′-bipyrimidine, bt = 2,2′-bithiazoline) by the action of external physical factors namely pressure or electromagnetic radiation. Competition between magnetic exchange and spin crossover has been studied in [Fe(bpym)(NCS)2]2bpym at 6.3 kbar. LIESST experiments carried out in [Fe(bpym)(NCSe)2]2bpym and [Fe(bt)(NCS)2]2bpym at 4.2 K have shown that is possible to achieve dinuclear molecules with different spin states in this class of compounds.


Coordination Chemistry Reviews | 2005

Multifunctionality in spin crossover materials

Ana B. Gaspar; Vadim Ksenofontov; Maksym Seredyuk; P. Gütlich


Coordination Chemistry Reviews | 2005

Pressure effect studies on spin crossover systems

P. Gütlich; Vadim Ksenofontov; Ana B. Gaspar


Coordination Chemistry Reviews | 2009

Spin crossover in metallomesogens

Ana B. Gaspar; Maksym Seredyuk; P. Gütlich


Chemistry: A European Journal | 2004

On the nature of the plateau in two-step dinuclear spin-crossover complexes.

Vadim Ksenofontov; Ana B. Gaspar; Virginie Niel; S. Reiman; José Antonio Real; P. Gütlich


European Journal of Inorganic Chemistry | 2004

A Novel Dinuclear FeII Spin-Crossover Complex Based on a 2,2-Bipyrimidine Bridge Ligand: [Fe(CH3bipy)(NCS)2]2bpym

Ana B. Gaspar; Vadim Ksenofontov; Víctor Martínez; M. Carmen Muñoz; José Antonio Real; P. Gütlich


Zeitschrift für anorganische und allgemeine Chemie | 2011

Mononuclear Complexes of Iron(II) Based on Symmetrical Tripodand Ligands: Novel Parent Systems for the Development of New Spin Crossover Metallomesogens

Maksym Seredyuk; Ana B. Gaspar; Joachim Kusz; P. Gütlich

Collaboration


Dive into the Ana B. Gaspar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maksym Seredyuk

Taras Shevchenko National University of Kyiv

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yann Garcia

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Joachim Kusz

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge