Ana Bratic
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana Bratic.
Journal of Clinical Investigation | 2013
Ana Bratic; Nils-Göran Larsson
Over the last decade, accumulating evidence has suggested a causative link between mitochondrial dysfunction and major phenotypes associated with aging. Somatic mitochondrial DNA (mtDNA) mutations and respiratory chain dysfunction accompany normal aging, but the first direct experimental evidence that increased mtDNA mutation levels contribute to progeroid phenotypes came from the mtDNA mutator mouse. Recent evidence suggests that increases in aging-associated mtDNA mutations are not caused by damage accumulation, but rather are due to clonal expansion of mtDNA replication errors that occur during development. Here we discuss the caveats of the traditional mitochondrial free radical theory of aging and highlight other possible mechanisms, including insulin/IGF-1 signaling (IIS) and the target of rapamycin pathways, that underlie the central role of mitochondria in the aging process.
The EMBO Journal | 2012
Benedetta Ruzzenente; Metodi D. Metodiev; Anna Wredenberg; Ana Bratic; Chan Bae Park; Yolanda Cámara; Dusanka Milenkovic; Volker Zickermann; Rolf Wibom; Kjell Hultenby; Hediye Erdjument-Bromage; Paul Tempst; Ulrich Brandt; James B. Stewart; Claes M. Gustafsson; Nils-Göran Larsson
Regulation of mtDNA expression is critical for maintaining cellular energy homeostasis and may, in principle, occur at many different levels. The leucine‐rich pentatricopeptide repeat containing (LRPPRC) protein regulates mitochondrial mRNA stability and an amino‐acid substitution of this protein causes the French‐Canadian type of Leigh syndrome (LSFC), a neurodegenerative disorder characterized by complex IV deficiency. We have generated conditional Lrpprc knockout mice and show here that the gene is essential for embryonic development. Tissue‐specific disruption of Lrpprc in heart causes mitochondrial cardiomyopathy with drastic reduction in steady‐state levels of most mitochondrial mRNAs. LRPPRC forms an RNA‐dependent protein complex that is necessary for maintaining a pool of non‐translated mRNAs in mammalian mitochondria. Loss of LRPPRC does not only decrease mRNA stability, but also leads to loss of mRNA polyadenylation and the appearance of aberrant mitochondrial translation. The translation pattern without the presence of LRPPRC is misregulated with excessive translation of some transcripts and no translation of others. Our findings point to the existence of an elaborate machinery that regulates mammalian mtDNA expression at the post‐transcriptional level.
PLOS Genetics | 2013
Anna Wredenberg; Marie Lagouge; Ana Bratic; Metodi D. Metodiev; Henrik Spåhr; Arnaud Mourier; Christoph Freyer; Benedetta Ruzzenente; Luke S. Tain; Sebastian Grönke; Francesca Baggio; Christian Kukat; Elisabeth Kremmer; Rolf Wibom; Paola Loguercio Polosa; Bianca Habermann; Linda Partridge; Chan Bae Park; Nils-Göran Larsson
Regulation of mitochondrial DNA (mtDNA) expression is critical for the control of oxidative phosphorylation in response to physiological demand, and this regulation is often impaired in disease and aging. We have previously shown that mitochondrial transcription termination factor 3 (MTERF3) is a key regulator that represses mtDNA transcription in the mouse, but its molecular mode of action has remained elusive. Based on the hypothesis that key regulatory mechanisms for mtDNA expression are conserved in metazoans, we analyzed Mterf3 knockout and knockdown flies. We demonstrate here that decreased expression of MTERF3 not only leads to activation of mtDNA transcription, but also impairs assembly of the large mitochondrial ribosomal subunit. This novel function of MTERF3 in mitochondrial ribosomal biogenesis is conserved in the mouse, thus we identify a novel and unexpected role for MTERF3 in coordinating the crosstalk between transcription and translation for the regulation of mammalian mtDNA gene expression.
PLOS Genetics | 2011
Ana Bratic; Anna Wredenberg; Sebastian Grönke; James B. Stewart; Arnaud Mourier; Benedetta Ruzzenente; Christian Kukat; Rolf Wibom; Bianca Habermann; Linda Partridge; Nils-Göran Larsson
The bicoid stability factor (BSF) of Drosophila melanogaster has been reported to be present in the cytoplasm, where it stabilizes the maternally contributed bicoid mRNA and binds mRNAs expressed from early zygotic genes. BSF may also have other roles, as it is ubiquitously expressed and essential for survival of adult flies. We have performed immunofluorescence and cell fractionation analyses and show here that BSF is mainly a mitochondrial protein. We studied two independent RNAi knockdown fly lines and report that reduced BSF protein levels lead to a severe respiratory deficiency and delayed development at the late larvae stage. Ubiquitous knockdown of BSF results in a severe reduction of the polyadenylation tail lengths of specific mitochondrial mRNAs, accompanied by an enrichment of unprocessed polycistronic RNA intermediates. Furthermore, we observed a significant reduction in mRNA steady state levels, despite increased de novo transcription. Surprisingly, mitochondrial de novo translation is increased and abnormal mitochondrial translation products are present in knockdown flies, suggesting that BSF also has a role in coordinating the mitochondrial translation in addition to its role in mRNA maturation and stability. We thus report a novel function of BSF in flies and demonstrate that it has an important intra-mitochondrial role, which is essential for maintaining mtDNA gene expression and oxidative phosphorylation.
Cell Reports | 2016
Rafael Pérez-Pérez; Teresa Lobo-Jarne; Dusanka Milenkovic; Arnaud Mourier; Ana Bratic; Alberto García-Bartolomé; Erika Fernandez-Vizarra; Aitor Delmiro; Inés García-Consuegra; Joaquín Arenas; Miguel A. Martín; Nils-Göran Larsson; Cristina Ugalde
Mitochondrial respiratory chain (MRC) complexes I, III, and IV associate into a variety of supramolecular structures known as supercomplexes and respirasomes. While COX7A2L was originally described as a supercomplex-specific factor responsible for the dynamic association of complex IV into these structures to adapt MRC function to metabolic variations, this role has been disputed. Here, we further examine the functional significance of COX7A2L in the structural organization of the mammalian respiratory chain. As in the mouse, human COX7A2L binds primarily to free mitochondrial complex III and, to a minor extent, to complex IV to specifically promote the stabilization of the III2+IV supercomplex without affecting respirasome formation. Furthermore, COX7A2L does not affect the biogenesis, stabilization, and function of the individual oxidative phosphorylation complexes. These data show that independent regulatory mechanisms for the biogenesis and turnover of different MRC supercomplex structures co-exist.
Cell Reports | 2016
Johanna H.K. Kauppila; Holly L. Baines; Ana Bratic; Marie-Lune Simard; Christoph Freyer; Arnaud Mourier; Craig Stamp; Roberta Filograna; Nils-Göran Larsson; Laura C. Greaves; James B. Stewart
Summary Mutations of mtDNA are an important cause of human disease, but few animal models exist. Because mammalian mitochondria cannot be transfected, the development of mice with pathogenic mtDNA mutations has been challenging, and the main strategy has therefore been to introduce mutations found in cell lines into mouse embryos. Here, we describe a phenotype-driven strategy that is based on detecting clonal expansion of pathogenic mtDNA mutations in colonic crypts of founder mice derived from heterozygous mtDNA mutator mice. As proof of concept, we report the generation of a mouse line transmitting a heteroplasmic pathogenic mutation in the alanine tRNA gene of mtDNA displaying typical characteristics of classic mitochondrial disease. In summary, we describe a straightforward and technically simple strategy based on mouse breeding and histology to generate animal models of mtDNA-mutation disease, which will be of great importance for studies of disease pathophysiology and preclinical treatment trials.
Nature Communications | 2015
Ana Bratic; Timo E.S. Kauppila; Bertil Macao; Sebastian Grönke; Triinu Siibak; James B. Stewart; Francesca Baggio; Jacqueline Dols; Linda Partridge; Maria Falkenberg; Anna Wredenberg; Nils-Göran Larsson
Replication errors are the main cause of mitochondrial DNA (mtDNA) mutations and a compelling approach to decrease mutation levels would therefore be to increase the fidelity of the catalytic subunit (POLγA) of the mtDNA polymerase. Here we genomically engineer the tamas locus, encoding fly POLγA, and introduce alleles expressing exonuclease- (exo−) and polymerase-deficient (pol−) POLγA versions. The exo− mutant leads to accumulation of point mutations and linear deletions of mtDNA, whereas pol− mutants cause mtDNA depletion. The mutant tamas alleles are developmentally lethal but can complement each other in trans resulting in viable flies with clonally expanded mtDNA mutations. Reconstitution of human mtDNA replication in vitro confirms that replication is a highly dynamic process where POLγA goes on and off the template to allow complementation during proofreading and elongation. The created fly models are valuable tools to study germ line transmission of mtDNA and the pathophysiology of POLγA mutation disease.
Nucleic Acids Research | 2014
Francesca Baggio; Ana Bratic; Arnaud Mourier; Timo E.S. Kauppila; Luke S. Tain; Christian Kukat; Bianca Habermann; Linda Partridge; Nils-Göran Larsson
Members of the pentatricopeptide repeat domain (PPR) protein family bind RNA and are important for post-transcriptional control of organelle gene expression in unicellular eukaryotes, metazoans and plants. They also have a role in human pathology, as mutations in the leucine-rich PPR-containing (LRPPRC) gene cause severe neurodegeneration. We have previously shown that the mammalian LRPPRC protein and its Drosophila melanogaster homolog DmLRPPRC1 (also known as bicoid stability factor) are necessary for mitochondrial translation by controlling stability and polyadenylation of mRNAs. We here report characterization of DmLRPPRC2, a second fruit fly homolog of LRPPRC, and show that it has a predominant mitochondrial localization and interacts with a stem-loop interacting RNA binding protein (DmSLIRP2). Ubiquitous downregulation of DmLrpprc2 expression causes respiratory chain dysfunction, developmental delay and shortened lifespan. Unexpectedly, decreased DmLRPPRC2 expression does not globally affect steady-state levels or polyadenylation of mitochondrial transcripts. However, some mitochondrial transcripts abnormally associate with the mitochondrial ribosomes and some products are dramatically overproduced and other ones decreased, which, in turn, results in severe deficiency of respiratory chain complexes. The function of DmLRPPRC2 thus seems to be to ensure that mitochondrial transcripts are presented to the mitochondrial ribosomes in an orderly fashion to avoid poorly coordinated translation.
Human Molecular Genetics | 2017
Triinu Siibak; Paula Clemente; Ana Bratic; Helene Bruhn; Timo E.S. Kauppila; Bertil Macao; Florian A. Schober; Nicole Lesko; Rolf Wibom; Karin Naess; Inger Nennesmo; Anna Wedell; Bradley Peter; Christoph Freyer; Maria Falkenberg; Anna Wredenberg
Abstract Mutations in the mitochondrial DNA polymerase, POLG, are associated with a variety of clinical presentations, ranging from early onset fatal brain disease in Alpers syndrome to chronic progressive external ophthalmoplegia. The majority of mutations are linked with disturbances of mitochondrial DNA (mtDNA) integrity and maintenance. On a molecular level, depending on their location within the enzyme, mutations either lead to mtDNA depletion or the accumulation of multiple mtDNA deletions, and in some cases these molecular changes can be correlated to the clinical presentation. We identified a patient with a dominant p.Y955H mutation in POLG, presenting with a severe, early‐onset multi‐systemic mitochondrial disease with bilateral sensorineural hearing loss, cataract, myopathy, and liver failure. Using a combination of disease models of Drosophila melanogaster and in vitro biochemistry analysis, we compare the molecular consequences of the p.Y955H mutation to the well‐documented p.Y955C mutation. We demonstrate that both mutations affect mtDNA replication and display a dominant negative effect, with the p.Y955H allele resulting in a more severe polymerase dysfunction.
Proceedings of the National Academy of Sciences of the United States of America | 2018
Timo E.S. Kauppila; Ana Bratic; Martin Borch Jensen; Francesca Baggio; Linda Partridge; Heinrich Jasper; Sebastian Grönke; Nils-Göran Larsson
Significance Mutations of mtDNA accumulate in aging humans and other mammals to cause mitochondrial dysfunction in a subset of cells in various tissues. Furthermore, experimental induction of mtDNA mutations causes a premature aging syndrome in the mouse. To study if mitochondrial dysfunction is universally involved in shortening life span in metazoans, we generated a series of fruit fly lines with varying levels of mtDNA mutations. Unexpectedly, we report that fruit flies are remarkably tolerant to mtDNA mutations, as exemplified by their lack of effect on physiology and lifespan. Only an artificially induced, very drastic increase of the mtDNA mutation load will lead to reduced lifespan, showing that mtDNA mutations are unlikely to limit lifespan in natural fruit fly populations. Mammals develop age-associated clonal expansion of somatic mtDNA mutations resulting in severe respiratory chain deficiency in a subset of cells in a variety of tissues. Both mathematical modeling based on descriptive data from humans and experimental data from mtDNA mutator mice suggest that the somatic mutations are formed early in life and then undergo mitotic segregation during adult life to reach very high levels in certain cells. To address whether mtDNA mutations have a universal effect on aging metazoans, we investigated their role in physiology and aging of fruit flies. To this end, we utilized genetically engineered flies expressing mutant versions of the catalytic subunit of mitochondrial DNA polymerase (DmPOLγA) as a means to introduce mtDNA mutations. We report here that lifespan and health in fruit flies are remarkably tolerant to mtDNA mutations. Our results show that the short lifespan and wide genetic bottleneck of fruit flies are limiting the extent of clonal expansion of mtDNA mutations both in individuals and between generations. However, an increase of mtDNA mutations to very high levels caused sensitivity to mechanical and starvation stress, intestinal stem cell dysfunction, and reduced lifespan under standard conditions. In addition, the effects of dietary restriction, widely considered beneficial for organismal health, were attenuated in flies with very high levels of mtDNA mutations.