Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana C. M. Brasileiro is active.

Publication


Featured researches published by Ana C. M. Brasileiro.


FEBS Journal | 2008

Plant–pathogen interactions: what is proteomics telling us?

Angela Mehta; Ana C. M. Brasileiro; Djair S.L. Souza; Eduardo Romano; Magnólia A. Campos; Maria Fatima Grossi-de-Sa; Marilia Santos Silva; Octávio L. Franco; Rodrigo da Rocha Fragoso; Rosangela Bevitori; Thales L. Rocha

Over the years, several studies have been performed to analyse plant–pathogen interactions. Recently, functional genomic strategies, including proteomics and transcriptomics, have contributed to the effort of defining gene and protein function and expression profiles. Using these ‘omic’ approaches, pathogenicity‐ and defence‐related genes and proteins expressed during phytopathogen infections have been identified and enormous datasets have been accumulated. However, the understanding of molecular plant–pathogen interactions is still an intriguing area of investigation. Proteomics has dramatically evolved in the pursuit of large‐scale functional assignment of candidate proteins and, by using this approach, several proteins expressed during phytopathogenic interactions have been identified. In this review, we highlight the proteins expressed during plant–virus, plant–bacterium, plant–fungus and plant–nematode interactions reported in proteomic studies, and discuss these findings considering the advantages and limitations of current proteomic tools.


BMC Genomics | 2008

Identification of drought-responsive genes in roots of upland rice (Oryza sativa L)

Aline R. Rabello; Cleber Morais Guimarães; Paulo H. N. Rangel; Felipe Rodrigues da Silva; Daniela Seixas; Emanuel de Souza; Ana C. M. Brasileiro; Carlos Roberto Spehar; M. E. Ferreira; Ângela Mehta

BackgroundRice (Oryza sativa L.) germplasm represents an extraordinary source of genes that control traits of agronomic importance such as drought tolerance. This diversity is the basis for the development of new cultivars better adapted to water restriction conditions, in particular for upland rice, which is grown under rainfall. The analyses of subtractive cDNA libraries and differential protein expression of drought tolerant and susceptible genotypes can contribute to the understanding of the genetic control of water use efficiency in rice.ResultsTwo subtractive libraries were constructed using cDNA of drought susceptible and tolerant genotypes submitted to stress against cDNA of well-watered plants. In silico analysis revealed 463 reads, which were grouped into 282 clusters. Several genes expressed exclusively in the tolerant or susceptible genotypes were identified. Additionally, proteome analysis of roots from stressed plants was performed and 22 proteins putatively associated to drought tolerance were identified by mass spectrometry.ConclusionSeveral genes and proteins involved in drought-response, as well as genes with no described homologs were identified. Genes exclusively expressed in the tolerant genotype were, in general, related to maintenance of turgor and cell integrity. In contrast, in the susceptible genotype, expression of genes involved in protection against cell damage was not detected. Several protein families identified in the proteomic analysis were not detected in the cDNA analysis. There is an indication that the mechanisms of susceptibility to drought in upland rice are similar to those of lowland varieties.


BMC Plant Biology | 2009

Characterization of WRKY co-regulatory networks in rice and Arabidopsis

Stefano Berri; Pamela Abbruscato; Odile Faivre-Rampant; Ana C. M. Brasileiro; Irene Fumasoni; Kouji Satoh; Shoshi Kikuchi; Luca Mizzi; Piero Morandini; Mario Enrico Pè; Pietro Piffanelli

BackgroundThe WRKY transcription factor gene family has a very ancient origin and has undergone extensive duplications in the plant kingdom. Several studies have pointed out their involvement in a range of biological processes, revealing that a large number of WRKY genes are transcriptionally regulated under conditions of biotic and/or abiotic stress. To investigate the existence of WRKY co-regulatory networks in plants, a whole gene family WRKYs expression study was carried out in rice (Oryza sativa). This analysis was extended to Arabidopsis thaliana taking advantage of an extensive repository of gene expression data.ResultsThe presented results suggested that 24 members of the rice WRKY gene family (22% of the total) were differentially-regulated in response to at least one of the stress conditions tested. We defined the existence of nine OsWRKY gene clusters comprising both phylogenetically related and unrelated genes that were significantly co-expressed, suggesting that specific sets of WRKY genes might act in co-regulatory networks. This hypothesis was tested by Pearson Correlation Coefficient analysis of the Arabidopsis WRKY gene family in a large set of Affymetrix microarray experiments. AtWRKYs were found to belong to two main co-regulatory networks (COR-A, COR-B) and two smaller ones (COR-C and COR-D), all including genes belonging to distinct phylogenetic groups. The COR-A network contained several AtWRKY genes known to be involved mostly in response to pathogens, whose physical and/or genetic interaction was experimentally proven. We also showed that specific co-regulatory networks were conserved between the two model species by identifying Arabidopsis orthologs of the co-expressed OsWRKY genes.ConclusionIn this work we identified sets of co-expressed WRKY genes in both rice and Arabidopsis that are functionally likely to cooperate in the same signal transduction pathways. We propose that, making use of data from co-regulatory networks, it is possible to highlight novel clusters of plant genes contributing to the same biological processes or signal transduction pathways. Our approach will contribute to unveil gene cooperation pathways not yet identified by classical genetic analyses. This information will open new routes contributing to the dissection of WRKY signal transduction pathways in plants.


BMC Genomics | 2012

Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection

Patricia M. Guimarães; Ana C. M. Brasileiro; Carolina Vianna Morgante; Andressa Cq Martins; Georgios Pappas; Orzenil Bonfim da Silva; Roberto C. Togawa; Soraya C. M. Leal-Bertioli; Ana Cg Araújo; Márcio C. Moretzsohn; David J. Bertioli

BackgroundCultivated peanut (Arachis hypogaea) is one of the most widely grown grain legumes in the world, being valued for its high protein and unsaturated oil contents. Worldwide, the major constraints to peanut production are drought and fungal diseases. Wild Arachis species, which are exclusively South American in origin, have high genetic diversity and have been selected during evolution in a range of environments and biotic stresses, constituting a rich source of allele diversity. Arachis stenosperma harbors resistances to a number of pests, including fungal diseases, whilst A. duranensis has shown improved tolerance to water limited stress. In this study, these species were used for the creation of an extensive databank of wild Arachis transcripts under stress which will constitute a rich source for gene discovery and molecular markers development.ResultsTranscriptome analysis of cDNA collections from A. stenosperma challenged with Cercosporidium personatum (Berk. and M.A. Curtis) Deighton, and A. duranensis submitted to gradual water limited stress was conducted using 454 GS FLX Titanium generating a total of 7.4 x 105 raw sequence reads covering 211 Mbp of both genomes. High quality reads were assembled to 7,723 contigs for A. stenosperma and 12,792 for A. duranensis and functional annotation indicated that 95% of the contigs in both species could be appointed to GO annotation categories. A number of transcription factors families and defense related genes were identified in both species. Additionally, the expression of five A. stenosperma Resistance Gene Analogs (RGAs) and four retrotransposon (FIDEL-related) sequences were analyzed by qRT-PCR. This data set was used to design a total of 2,325 EST-SSRs, of which a subset of 584 amplified in both species and 214 were shown to be polymorphic using ePCR.ConclusionsThis study comprises one of the largest unigene dataset for wild Arachis species and will help to elucidate genes involved in responses to biological processes such as fungal diseases and water limited stress. Moreover, it will also facilitate basic and applied research on the genetics of peanut through the development of new molecular markers and the study of adaptive variation across the genus.


BMC Research Notes | 2011

Reference genes for quantitative reverse transcription-polymerase chain reaction expression studies in wild and cultivated peanut

Carolina Vianna Morgante; Patricia M. Guimarães; Andressa Cq Martins; Ana Cg Araújo; Soraya C. M. Leal-Bertioli; David J. Bertioli; Ana C. M. Brasileiro

BackgroundWild peanut species (Arachis spp.) are a rich source of new alleles for peanut improvement. Plant transcriptome analysis under specific experimental conditions helps the understanding of cellular processes related, for instance, to development, stress response, and crop yield. The validation of these studies has been generally accomplished by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) which requires normalization of mRNA levels among samples. This can be achieved by comparing the expression ratio between a gene of interest and a reference gene which is constitutively expressed. Nowadays there is a lack of appropriate reference genes for both wild and cultivated Arachis. The identification of such genes would allow a consistent analysis of qRT-PCR data and speed up candidate gene validation in peanut.ResultsA set of ten reference genes were analyzed in four Arachis species (A. magna; A. duranensis; A. stenosperma and A. hypogaea) subjected to biotic (root-knot nematode and leaf spot fungus) and abiotic (drought) stresses, in two distinct plant organs (roots and leaves). By the use of three programs (GeNorm, NormFinder and BestKeeper) and taking into account the entire dataset, five of these ten genes, ACT1 (actin depolymerizing factor-like protein), UBI1 (polyubiquitin), GAPDH (glyceraldehyde-3-phosphate dehydrogenase), 60S (60S ribosomal protein L10) and UBI2 (ubiquitin/ribosomal protein S27a) emerged as top reference genes, with their stability varying in eight subsets. The former three genes were the most stable across all species, organs and treatments studied.ConclusionsThis first in-depth study of reference genes validation in wild Arachis species will allow the use of specific combinations of secure and stable reference genes in qRT-PCR assays. The use of these appropriate references characterized here should improve the accuracy and reliability of gene expression analysis in both wild and cultivated Arachis and contribute for the better understanding of gene expression in, for instance, stress tolerance/resistance mechanisms in plants.


BMC Genomics | 2013

Analysis of the leaf transcriptome of Musa acuminata during interaction with Mycosphaerella musicola: gene assembly, annotation and marker development.

M.A.N. Passos; Viviane Oliveira de Cruz; F.L. Emediato; Cristiane Camargo de Teixeira; Vânia C. R. Azevedo; Ana C. M. Brasileiro; Edson Perito Amorim; Claudia Fortes Ferreira; Natália F. Martins; Roberto C. Togawa; Georgios Pappas Junior; Orzenil Bonfim da Silva; Robert N.G. Miller

BackgroundAlthough banana (Musa sp.) is an important edible crop, contributing towards poverty alleviation and food security, limited transcriptome datasets are available for use in accelerated molecular-based breeding in this genus. 454 GS-FLX Titanium technology was employed to determine the sequence of gene transcripts in genotypes of Musa acuminata ssp. burmannicoides Calcutta 4 and M. acuminata subgroup Cavendish cv. Grande Naine, contrasting in resistance to the fungal pathogen Mycosphaerella musicola, causal organism of Sigatoka leaf spot disease. To enrich for transcripts under biotic stress responses, full length-enriched cDNA libraries were prepared from whole plant leaf materials, both uninfected and artificially challenged with pathogen conidiospores.ResultsThe study generated 846,762 high quality sequence reads, with an average length of 334 bp and totalling 283 Mbp. De novo assembly generated 36,384 and 35,269 unigene sequences for M. acuminata Calcutta 4 and Cavendish Grande Naine, respectively. A total of 64.4% of the unigenes were annotated through Basic Local Alignment Search Tool (BLAST) similarity analyses against public databases.Assembled sequences were functionally mapped to Gene Ontology (GO) terms, with unigene functions covering a diverse range of molecular functions, biological processes and cellular components. Genes from a number of defense-related pathways were observed in transcripts from each cDNA library. Over 99% of contig unigenes mapped to exon regions in the reference M. acuminata DH Pahang whole genome sequence. A total of 4068 genic-SSR loci were identified in Calcutta 4 and 4095 in Cavendish Grande Naine. A subset of 95 potential defense-related gene-derived simple sequence repeat (SSR) loci were validated for specific amplification and polymorphism across M. acuminata accessions. Fourteen loci were polymorphic, with alleles per polymorphic locus ranging from 3 to 8 and polymorphism information content ranging from 0.34 to 0.82.ConclusionsA large set of unigenes were characterized in this study for both M. acuminata Calcutta 4 and Cavendish Grande Naine, increasing the number of public domain Musa ESTs. This transcriptome is an invaluable resource for furthering our understanding of biological processes elicited during biotic stresses in Musa. Gene-based markers will facilitate molecular breeding strategies, forming the basis of genetic linkage mapping and analysis of quantitative trait loci.


Functional Plant Biology | 2013

A survey of genes involved in Arachis stenosperma resistance to Meloidogyne arenaria race 1

Carolina Vianna Morgante; Ana C. M. Brasileiro; Philip A. Roberts; Larissa Arrais Guimarães; Ana Claudia Guerra Araujo; Leonardo N. Fonseca; Soraya C. M. Leal-Bertioli; David J. Bertioli; Patricia M. Guimarães

Root-knot nematodes constitute a constraint for important crops, including peanut (Arachis hypogaea L.). Resistance to Meloidogyne arenaria has been identified in the peanut wild relative Arachis stenosperma Krapov. & W. C. Greg., in which the induction of feeding sites by the nematode was inhibited by an early hypersensitive response (HR). Here, the transcription expression profiles of 19 genes selected from Arachis species were analysed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), during the early phases of an A. stenosperma-M. arenaria interaction. Sixteen genes were significantly differentially expressed in infected and non-infected roots, in at least one of the time points analysed: 3, 6, and 9 days after inoculation. These genes are involved in the HR and production of secondary metabolites related to pathogen defence. Seven genes encoding a resistance protein MG13, a helix-loop helix protein, an ubiquitin protein ligase, a patatin-like protein, a catalase, a DUF538 protein, and a resveratrol synthase, were differentially expressed in all time points analysed. Transcripts of two genes had their spatial and temporal distributions analysed by in situ hybridisation that validated qRT-PCR data. The identification of candidate resistance genes involved in wild peanut resistance to Meloidogyne can provide additional resources for peanut breeding and transgenic approaches.


Plant Molecular Biology Reporter | 2015

Transcriptome Profiling of Wild Arachis from Water-Limited Environments Uncovers Drought Tolerance Candidate Genes

Ana C. M. Brasileiro; Carolina Vianna Morgante; Ana Claudia Guerra Araujo; Soraya C. M. Leal-Bertioli; Amanda Kristina Silva Kristina Silva; Andressa Martins; Christina Cleo Vinson; C. M. R. Santos; Orzenil Bonfim; Roberto C. Togawa; Mario A. P. Saraiva; David J. Bertioli; Patricia M. Guimarães

Peanut (Arachis hypogaea L.) is an important legume cultivated mostly in drought-prone areas where its productivity can be limited by water scarcity. The development of more drought-tolerant varieties is, therefore, a priority for peanut breeding programs worldwide. In contrast to cultivated peanut, wild relatives have a broader genetic diversity and constitute a rich source of resistance/tolerance alleles to biotic and abiotic stresses. The present study takes advantage of this diversity to identify drought-responsive genes by analyzing the expression profile of two wild species, Arachis duranensis and Arachis magna (AA and BB genomes, respectively), in response to progressive water deficit in soil. Data analysis from leaves and roots of A. duranensis (454 sequencing) and A. magna (suppression subtractive hybridization (SSH)) stressed and control complementary DNA (cDNA) libraries revealed several differentially expressed genes in silico, and 44 of them were selected for further validation by quantitative RT-PCR (qRT-PCR). This allowed the identification of drought-responsive candidate genes, such as Expansin, Nitrilase, NAC, and bZIP transcription factors, displaying significant levels of differential expression during stress imposition in both species. This is the first report on identification of differentially expressed genes under drought stress and recovery in wild Arachis species. The generated transcriptome data, besides being a valuable resource for gene discovery, will allow the characterization of new alleles and development of molecular markers associated with drought responses in peanut. These together constitute important tools for the peanut breeding program and also contribute to a better comprehension of gene modulation in response to water deficit and rehydration.


Fitopatologia Brasileira | 2003

Biologia molecular do processo de infecção por Agrobacterium spp.

Gisele M. de Andrade; Laudete Maria Sartoretto; Ana C. M. Brasileiro

Agrobacterium tumefaciens is the causal agent of crown gall disease that affects most dicotyledonous plants and is characterized by growth of tumors in the region between the plant stem and root (crown). The development of tumors is the result of a natural transfer process of Agrobacterium spp. genes to the genome of the infected plant. These genes are found on a high molecular weight plasmid denominated Ti (tumor inducing), present in all pathogenic Agrobacterium spp. strains. Two Ti plasmid regions are directly involved in tumor induction. The T-region, which corresponds to the segment of transferred DNA to the plant cells, and the virulence (vir) region, which contains genes involved in the synthesis of proteins required for T-region transfer. This region, when transferred and integrated to the plant cell genome, is called T-DNA (transferred DNA). The genes present in T-DNA encode enzymes involved in the biosynthesis of plant growth regulators, auxin and cytokinin. The synthesis of these regulators by transformed cells results in a hormonal inbalance, leading to the development of tumors where the infection took place. Another group of genes present in T-DNA encodes enzymes required for opine synthesis, which are specifically catabolised by the colonizing bacterium as the source of nutrients. Preliminary knowledge of the molecular basis involved in the infection process of the host plant by Agrobacterium spp. allowed the use of this bacterium as a natural vector for plant genetic transformation.


PLOS ONE | 2015

Reference Gene Selection for qPCR Analysis in Tomato-Bipartite Begomovirus Interaction and Validation in Additional Tomato-Virus Pathosystems

A. L. M. Lacerda; Leonardo N. Fonseca; Rosana Blawid; L. S. Boiteux; Simone G. Ribeiro; Ana C. M. Brasileiro

Quantitative Polymerase Chain Reaction (qPCR) is currently the most sensitive technique used for absolute and relative quantification of a target gene transcript, requiring the use of appropriated reference genes for data normalization. To accurately estimate the relative expression of target tomato (Solanum lycopersicum L.) genes responsive to several virus species in reverse transcription qPCR analysis, the identification of reliable reference genes is mandatory. In the present study, ten reference genes were analyzed across a set of eight samples: two tomato contrasting genotypes (‘Santa Clara’, susceptible, and its near-isogenic line ‘LAM 157’, resistant); subjected to two treatments (inoculation with Tomato chlorotic mottle virus (ToCMoV) and its mock-inoculated control) and in two distinct times after inoculation (early and late). Reference genes stability was estimated by three statistical programs (geNorm, NormFinder and BestKeeper). To validate the results over broader experimental conditions, a set of ten samples, corresponding to additional three tomato-virus pathosystems that included tospovirus, crinivirus and tymovirus + tobamovirus, was analyzed together with the tomato-ToCMoV pathosystem dataset, using the same algorithms. Taking into account the combined analyses of the ranking order outputs from the three algorithms, TIP41 and EF1 were identified as the most stable genes for tomato-ToCMoV pathosystem, and TIP41 and EXP for the four pathosystems together, and selected to be used as reference in the forthcoming expression qPCR analysis of target genes in experimental conditions involving the aforementioned tomato-virus pathosystems.

Collaboration


Dive into the Ana C. M. Brasileiro's collaboration.

Top Co-Authors

Avatar

Patricia M. Guimarães

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Soraya C. M. Leal-Bertioli

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Ana Claudia Guerra Araujo

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Carolina Vianna Morgante

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Márcio C. Moretzsohn

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Roberto C. Togawa

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Ana Cg Araújo

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angela Mehta

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Researchain Logo
Decentralizing Knowledge