Ana Carolina Baptista Moreno Martin
Federal University of São Carlos
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Hotspot
Dive into the research topics where Ana Carolina Baptista Moreno Martin is active.
Publication
Featured researches published by Ana Carolina Baptista Moreno Martin.
Toxins | 2010
Heloisa S. Selistre-de-Araujo; Carmen Lucia S. Pontes; Cyntia F. Montenegro; Ana Carolina Baptista Moreno Martin
Cell migration is a key process for the defense of pluricellular organisms against pathogens, and it involves a set of surface receptors acting in an ordered fashion to contribute directionality to the movement. Among these receptors are the integrins, which connect the cell cytoskeleton to the extracellular matrix components, thus playing a central role in cell migration. Integrin clustering at focal adhesions drives actin polymerization along the cell leading edge, resulting in polarity of cell movement. Therefore, small integrin-binding proteins such as the snake venom disintegrins that inhibit integrin-mediated cell adhesion are expected to inhibit cell migration. Here we review the current knowledge on disintegrin and disintegrin-like protein effects on cell migration and their potential use as pharmacological tools in anti-inflammatory therapy as well as in inhibition of metastatic invasion.
Journal of Chromatography B | 2012
James Almada da Silva; Amanda Blanque Becceneri; Hêmily Sanches Mutti; Ana Carolina Baptista Moreno Martin; Maria Fátima das Graças Fernandes da Silva; João B. Fernandes; Paulo C. Vieira; Márcia Regina Cominetti
This study describes an optimization of [6]-, [8]- and [10]-gingerol isolation and purification in semi-preparative HPLC scale and their anti-proliferative activity. The gingerols purification was carried out in HPLC system using a Luna-C₁₈ and the best mobile phase evaluated was MeOH/H₂O (75:25, v/v). This new methodology for the gingerols isolation was very effective, since considerable amounts (in the range of milligrams) with a good purity degree (∼98%) were achieved in 30 min of chromatographic run. [6]-, [8]- and [10]-Gingerol purified by this methodology inhibited the proliferation of MDA-MB-231 tumor cell line with IC₅₀ of 666.2±134.6 μM, 135.6±22.6 μM and 12.1±0.3 μM, respectively. These substances also inhibited human fibroblasts (HF) cell proliferation, however in concentrations starting from 500 μM. In conclusion, our results demonstrate an optimization of gingerols isolation and their specific anti-proliferative activities against tumor cells, suggesting their use as important models for drug design in an attempt to develop new compounds with fewer side effects when compared to conventional chemotherapy.
Biochimie | 2009
Márcia Regina Cominetti; Ana Carolina Baptista Moreno Martin; Juliana Uema Ribeiro; Ibtissem Djaafri; Françoise Fauvel-Lafève; Michel Crépin; Heloisa S. Selistre-de-Araujo
This work aimed to investigate the role of the disintegrin domain of the human ADAM9 (ADAM9D) on the adhesion of breast tumor cells and platelets to collagen I, in a dynamic flow assay to simulate in vivo shear conditions. Recombinant ADAM9D was able to support tumor cell adhesion through binding to the beta1 integrin subunit and also to inhibit the invasion through matrigel in vitro. In a dynamic flow assay ADAM9D inhibited about 75% and 65% of MDA-MB-231 tumor cells and platelet adhesion to collagen I, respectively. In addition, it was demonstrated that alphaVbeta3 integrin is new interacting partner for ADAM9D. In conclusion, these results suggest a role for the disintegrin domain of ADAM9 in the metastatic process. Also, ADAM9D may be a tool for investigating the role of ADAMs in metastasis and cancer progression and for the design of selective inhibitors against the adhesion and extravasation of cancer cells.
Mini-reviews in Medicinal Chemistry | 2014
Juliana Poltronieri; Amanda Blanque Becceneri; Angelina Maria Fuzer; Julio Conceicao Filho; Ana Carolina Baptista Moreno Martin; Paulo C. Vieira; Normand Pouliot; Márcia Regina Cominetti
For many years, ginger or ginger root, the rhizome of the plant Zingiber officinale, has been consumed as a delicacy, medicine, or spice. Several studies have been conducted on the medicinal properties of ginger against various disorders, including cancer. Cancer is the second leading cause of death, and chemoprevention is defined as the use of natural or synthetic substances to prevent cancer initiation or progression. Evidence that ginger-derived compounds have inhibitory effects on various cancer cell types is increasingly being reported in the scientific literature. In this review we focused on the cancer chemopreventive effects of [6]-gingerol, the major pungent component of ginger, and its impact on different steps of the metastatic process.
The Journal of Pathology | 2015
Rachel Zoe Carter; Kelli Cristina Micocci; Anthony Natoli; Richard P. Redvers; Sophie Paquet-Fifield; Ana Carolina Baptista Moreno Martin; Delphine Denoyer; Xiawei Ling; Soo-Hyun Kim; Rebeka Tomasin; Heloisa S. Selistre-de-Araujo; Robin L. Anderson; Normand Pouliot
Although many preclinical studies have implicated β3 integrin receptors (αvβ3 and αIIbβ3) in cancer progression, β3 inhibitors have shown only modest efficacy in patients with advanced solid tumours. The limited efficacy of β3 inhibitors in patients could arise from our incomplete understanding of the precise function of β3 integrin and, consequently, inappropriate clinical application. Data from animal studies are conflicting and indicate heterogeneity with respect to the relative contributions of β3‐expressing tumour and stromal cell populations in different cancers. Here we aimed to clarify the function and relative contributions to metastasis of tumour versus stromal β3 integrin in clinically relevant models of spontaneous breast cancer metastasis, with particular emphasis on bone metastasis. We show that stable down‐regulation of tumour β3 integrin dramatically impairs spontaneous (but not experimental) metastasis to bone and lung without affecting primary tumour growth in the mammary gland. Unexpectedly, and in contrast to subcutaneous tumours, orthotopic tumour vascularity, growth and spontaneous metastasis were not altered in mice null for β3 integrin. Tumour β3 integrin promoted migration, protease expression and trans‐endothelial migration in vitro and increased vascular dissemination in vivo, but was not necessary for bone colonization in experimental metastasis assays. We conclude that tumour, rather than stromal, β3 expression is essential and is required early for efficient spontaneous breast cancer metastasis to bone and soft tissues. Accordingly, differential gene expression analysis in cohorts of breast cancer patients showed a strong association between high β3 expression, early metastasis and shorter disease‐free survival in patients with oestrogen receptor‐negative tumours. We propose that β3 inhibitors may be more efficacious if used in a neoadjuvant setting, rather than after metastases are established. Copyright
Biochimie | 2013
Kelli Cristina Micocci; Ana Carolina Baptista Moreno Martin; Cyntia F. Montenegro; Araceli Cristina Durante; Normand Pouliot; Márcia Regina Cominetti; Heloisa S. Selistre-de-Araujo
ADAM9 (A Disintegrin And Metalloproteinase 9) is a member of the ADAM protein family which contains a disintegrin domain. This protein family plays key roles in many physiological processes, including fertilization, migration, and cell survival. The ADAM proteins have also been implicated in various diseases, including cancer. Specifically, ADAM9 has been suggested to be involved in metastasis. To address this question, we generated ADAM9 knockdown clones of MDA-MB-231 breast tumor cells using silencing RNAs that were tested for cell adhesion, proliferation, migration and invasion assays. In RNAi-mediated ADAM9 silenced MDA-MB-231 cells, the expression of ADAM9 was lower from the third to the sixth day after silencing and inhibited tumor cell invasion in matrigel by approximately 72% when compared to control cells, without affecting cell adhesion, proliferation or migration. In conclusion, the generation of MDA-MB-231 knockdown clones lacking ADAM9 expression inhibited tumor cell invasion in vitro, suggesting that ADAM9 is an important molecule in the processes of invasion and metastasis.
Cell Adhesion & Migration | 2015
Ana Carolina Baptista Moreno Martin; Ana Carolina Ferreira Cardoso; Heloisa S. Selistre-de-Araujo; Márcia Regina Cominetti
One of the most important features of malignant cells is their capacity to invade adjacent tissues and metastasize to distant organs. This process involves the creation, by tumor and stroma cells, of a specific microenvironment, suitable for proliferation, migration and invasion of tumor cells. The ADAM family of proteins has been involved in these processes. This work aimed to investigate the role of the recombinant disintegrin domain of the human ADAM9 (rADAM9D) on the adhesive and mobility properties of DU145 prostate tumor cells. rADAM9D was able to support DU145 cell adhesion, inhibit the migration of DU145 cells, as well as the invasion of this cell line through matrigel in vitro. Overall this work demonstrates that rADAM9D induces specific cellular migratory properties when compared with different constructs having additional domains, specially those of metalloproteinase and cysteine-rich domains. Furthermore, we showed that rADAM9D was able to inhibit cell adhesion, migration and invasion mainly through interacting with α6β1 in DU145 tumor cell line. These results may contribute to the development of new therapeutic strategies for prostate cancer.
Journal of Leukocyte Biology | 2015
Rafael Silveira Amendola; Ana Carolina Baptista Moreno Martin; Heloisa S. Selistre-de-Araujo; Heitor A. Paula-Neto; Roberta Saldanha-Gama; Christina Barja-Fidalgo
ADAM9 is a member of the ADAM family whose expression positively correlates with tumor progression. Besides the metalloprotease activity, ADAM9D interacts with different integrins, modulating cell‐adhesion events. Previous studies pointed to an important role for neutrophils in tumor development, as the inhibition of neutrophil migration or depletion of this immune cell impairs tumor growth. However, our understanding of the molecular mechanisms involved in this process, as well as the main key players acting on neutrophils, is very limited. Here, we investigated the possible modulatory effects of ADAM9D on human neutrophil functions. Our results show that ADAM9D promotes neutrophil activation and chemotaxis in a process that depends on the engagement of αvβ3 and α9β1 integrins and on the activation of PI3K/Akt and MAPK signaling pathway. ADAM9D impairs migration of neutrophils toward fMLP, LTB4, and IL‐8 as classic chemoattractants. This effect is blocked by PTX, a G(i)PCR inhibitor. Furthermore, CXCR2 antagonists RPTX and SB225002 also impaired neutrophil chemotaxis in response to ADAM9D, suggesting a hierarchical cross‐talk of integrins with CXCR2. Our results indicate that ADAM9D activates neutrophil functions and may be implicated in the inflammatory events associated with cancer and other disorders.
Oncotarget | 2017
Ana Carolina Baptista Moreno Martin; Angelina Maria Fuzer; Amanda Blanque Becceneri; James Almada da Silva; Rebeka Tomasin; Delphine Denoyer; Soo Hyun Kim; Katherine A. McIntyre; Helen B. Pearson; Belinda Yeo; Aadya Nagpal; Xiawei Ling; Heloisa S. Selistre-de-Araujo; Paulo C. Vieira; Márcia Regina Cominetti; Normand Pouliot
There is increasing interest in the use of non-toxic natural products for the treatment of various pathologies, including cancer. In particular, biologically active constituents of the ginger oleoresin (Zingiber officinale Roscoe) have been shown to mediate anti-tumour activity and to contribute to the anti-inflammatory, antioxidant, antimicrobial, and antiemetic properties of ginger. Here we report on the inhibitory properties of [10]-gingerol against metastatic triple negative breast cancer (TNBC) in vitro and in vivo. We show that [10]-gingerol concentration-dependently induces apoptotic death in mouse and human TNBC cell lines in vitro. In addition, [10]-gingerol is well tolerated in vivo, induces a marked increase in caspase-3 activation and inhibits orthotopic tumour growth in a syngeneic mouse model of spontaneous breast cancer metastasis. Importantly, using both spontaneous and experimental metastasis assays, we show for the first time that [10]-gingerol significantly inhibits metastasis to multiple organs including lung, bone and brain. Remarkably, inhibition of brain metastasis was observed even when treatment was initiated after surgical removal of the primary tumour. Taken together, these results indicate that [10]-gingerol may be a safe and useful complementary therapy for the treatment of metastatic breast cancer and warrant further investigation of its efficacy, either alone or in combination with standard systemic therapies, in pre-clinical models of metastatic breast cancer and in patients.
Disease Models & Mechanisms | 2018
Soo Hyun Kim; Richard P. Redvers; Lap Hing Chi; Xiawei Ling; Andrew J. Lucke; Robert C. Reid; David P. Fairlie; Ana Carolina Baptista Moreno Martin; Robin L. Anderson; Delphine Denoyer; Normand Pouliot
ABSTRACT Breast cancer brain metastases remain largely incurable. Although several mouse models have been developed to investigate the genes and mechanisms regulating breast cancer brain metastasis, these models often lack clinical relevance since they require the use of immunocompromised mice and/or are poorly metastatic to brain from the mammary gland. We describe the development and characterisation of an aggressive brain metastatic variant of the 4T1 syngeneic model (4T1Br4) that spontaneously metastasises to multiple organs, but is selectively more metastatic to the brain from the mammary gland than parental 4T1 tumours. As seen by immunohistochemistry, 4T1Br4 tumours and brain metastases display a triple-negative phenotype, consistent with the high propensity of this breast cancer subtype to spread to brain. In vitro assays indicate that 4T1Br4 cells have an enhanced ability to adhere to or migrate across a brain-derived endothelial monolayer and greater invasive response to brain-derived soluble factors compared to 4T1 cells. These properties are likely to contribute to the brain selectivity of 4T1Br4 tumours. Expression profiling and gene set enrichment analyses demonstrate the clinical relevance of the 4T1Br4 model at the transcriptomic level. Pathway analyses implicate tumour-intrinsic immune regulation and vascular interactions in successful brain colonisation, revealing potential therapeutic targets. Evaluation of two histone deacetylase inhibitors, SB939 and 1179.4b, shows partial efficacy against 4T1Br4 metastasis to brain and other sites in vivo, and potent radio-sensitising properties in vitro. The 4T1Br4 model provides a clinically relevant tool for mechanistic studies and to evaluate novel therapies against brain metastasis. This article has an associated First Person interview with Soo-Hyun Kim, joint first author of the paper. Summary: The authors introduce a new syngeneic mouse model of spontaneous breast cancer brain metastasis, demonstrate its phenotypic, functional and transcriptomic relevance to human TNBC brain metastasis, and test novel therapies.