Ana Carolina Migliorini Figueira
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Hotspot
Dive into the research topics where Ana Carolina Migliorini Figueira is active.
Publication
Featured researches published by Ana Carolina Migliorini Figueira.
Journal of Biological Chemistry | 2012
Angélica Amorim Amato; Senapathy Rajagopalan; Jean Z. Lin; Bruno M. Carvalho; Ana Carolina Migliorini Figueira; Jenny Lu; Stephen D. Ayers; Melina Mottin; Rodrigo L. Silveira; Paulo Telles de Souza; Rosa H. Mourão; Mario J.A. Saad; Marie Togashi; Luiz Alberto Simeoni; Dulcineia S.P. Abdalla; Munir S. Skaf; Igor Polikparpov; Maria do Carmo Alves de Lima; Suely Lins Galdino; Richard G. Brennan; John D. Baxter; Ivan da Rocha Pitta; Paul Webb; Kevin J. Phillips; Francisco de Assis Rocha Neves
Background: PPARγ agonists improve insulin sensitivity but also evoke weight gain. Results: GQ-16 is a PPARγ partial agonist that blocks receptor phosphorylation by Cdk5 and improves insulin sensitivity in diabetic mice in the absence of weight gain. Conclusion: The unique binding mode of GQ-16 appears to be responsible for the compounds advantageous pharmacological profile. Significance: Similar compounds could have promise as anti-diabetic therapeutics. The recent discovery that peroxisome proliferator-activated receptor γ (PPARγ) targeted anti-diabetic drugs function by inhibiting Cdk5-mediated phosphorylation of the receptor has provided a new viewpoint to evaluate and perhaps develop improved insulin-sensitizing agents. Herein we report the development of a novel thiazolidinedione that retains similar anti-diabetic efficacy as rosiglitazone in mice yet does not elicit weight gain or edema, common side effects associated with full PPARγ activation. Further characterization of this compound shows GQ-16 to be an effective inhibitor of Cdk5-mediated phosphorylation of PPARγ. The structure of GQ-16 bound to PPARγ demonstrates that the compound utilizes a binding mode distinct from other reported PPARγ ligands, although it does share some structural features with other partial agonists, such as MRL-24 and PA-082, that have similarly been reported to dissociate insulin sensitization from weight gain. Hydrogen/deuterium exchange studies reveal that GQ-16 strongly stabilizes the β-sheet region of the receptor, presumably explaining the compounds efficacy in inhibiting Cdk5-mediated phosphorylation of Ser-273. Molecular dynamics simulations suggest that the partial agonist activity of GQ-16 results from the compounds weak ability to stabilize helix 12 in its active conformation. Our results suggest that the emerging model, whereby “ideal” PPARγ-based therapeutics stabilize the β-sheet/Ser-273 region and inhibit Cdk5-mediated phosphorylation while minimally invoking adipogenesis and classical agonism, is indeed a valid framework to develop improved PPARγ modulators that retain antidiabetic actions while minimizing untoward effects.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Leandro Martínez; Alessandro S. Nascimento; Fábio Macêdo Nunes; Kevin J. Phillips; Ricardo Aparicio; Sandra Martha Gomes Dias; Ana Carolina Migliorini Figueira; Jean H. Lin; Phuong H. Nguyen; James W. Apriletti; Francisco de Assis Rocha Neves; John D. Baxter; Paul Webb; Munir S. Skaf; Igor Polikarpov
Nuclear receptors are important targets for pharmaceuticals, but similarities between family members cause difficulties in obtaining highly selective compounds. Synthetic ligands that are selective for thyroid hormone (TH) receptor β (TRβ) vs. TRα reduce cholesterol and fat without effects on heart rate; thus, it is important to understand TRβ-selective binding. Binding of 3 selective ligands (GC-1, KB141, and GC-24) is characterized at the atomic level; preferential binding depends on a nonconserved residue (Asn-331β) in the TRβ ligand-binding cavity (LBC), and GC-24 gains extra selectivity from insertion of a bulky side group into an extension of the LBC that only opens up with this ligand. Here we report that the natural TH 3,5,3′-triodothyroacetic acid (Triac) exhibits a previously unrecognized mechanism of TRβ selectivity. TR x-ray structures reveal better fit of ligand with the TRα LBC. The TRβ LBC, however, expands relative to TRα in the presence of Triac (549 Å3 vs. 461 Å3), and molecular dynamics simulations reveal that water occupies the extra space. Increased solvation compensates for weaker interactions of ligand with TRβ and permits greater flexibility of the Triac carboxylate group in TRβ than in TRα. We propose that this effect results in lower entropic restraint and decreases free energy of interactions between Triac and TRβ, explaining subtype-selective binding. Similar effects could potentially be exploited in nuclear receptor drug design.
Molecular Endocrinology | 2011
Ana Carolina Migliorini Figueira; Daniel M. Saidemberg; Paulo Telles de Souza; Leandro Martínez; Thomas S. Scanlan; John D. Baxter; Munir S. Skaf; Mario Sergio Palma; P M Webb; Igor Polikarpov
Thyroid hormone receptors (TRs) are ligand-gated transcription factors with critical roles in development and metabolism. Although x-ray structures of TR ligand-binding domains (LBDs) with agonists are available, comparable structures without ligand (apo-TR) or with antagonists are not. It remains important to understand apo-LBD conformation and the way that it rearranges with ligands to develop better TR pharmaceuticals. In this study, we conducted hydrogen/deuterium exchange on TR LBDs with or without agonist (T(3)) or antagonist (NH3). Both ligands reduce deuterium incorporation into LBD amide hydrogens, implying tighter overall folding of the domain. As predicted, mass spectroscopic analysis of individual proteolytic peptides after hydrogen/deuterium exchange reveals that ligand increases the degree of solvent protection of regions close to the buried ligand-binding pocket. However, there is also extensive ligand protection of other regions, including the dimer surface at H10-H11, providing evidence for allosteric communication between the ligand-binding pocket and distant interaction surfaces. Surprisingly, C-terminal activation helix H12, which is known to alter position with ligand, remains relatively protected from solvent in all conditions suggesting that it is packed against the LBD irrespective of the presence or type of ligand. T(3), but not NH3, increases accessibility of the upper part of H3-H5 to solvent, and we propose that TR H12 interacts with this region in apo-TR and that this interaction is blocked by T(3) but not NH3. We present data from site-directed mutagenesis experiments and molecular dynamics simulations that lend support to this structural model of apo-TR and its ligand-dependent conformational changes.
PLOS ONE | 2012
Amanda Bernardes; Fernanda Aparecida Heleno Batista; Mario de Oliveira Neto; Ana Carolina Migliorini Figueira; Paul Webb; Daniel Saidemberg; Mario Sergio Palma; Igor Polikarpov
The peroxisome proliferator-activated receptors (PPARs) regulate genes involved in lipid and carbohydrate metabolism, and are targets of drugs approved for human use. Whereas the crystallographic structure of the complex of full length PPARγ and RXRα is known, structural alterations induced by heterodimer formation and DNA contacts are not well understood. Herein, we report a small-angle X-ray scattering analysis of the oligomeric state of hPPARγ alone and in the presence of retinoid X receptor (RXR). The results reveal that, in contrast with other studied nuclear receptors, which predominantly form dimers in solution, hPPARγ remains in the monomeric form by itself but forms heterodimers with hRXRα. The low-resolution models of hPPARγ/RXRα complexes predict significant changes in opening angle between heterodimerization partners (LBD) and extended and asymmetric shape of the dimer (LBD-DBD) as compared with X-ray structure of the full-length receptor bound to DNA. These differences between our SAXS models and the high-resolution crystallographic structure might suggest that there are different conformations of functional heterodimer complex in solution. Accordingly, hydrogen/deuterium exchange experiments reveal that the heterodimer binding to DNA promotes more compact and less solvent-accessible conformation of the receptor complex.
PLOS ONE | 2012
Fernanda Aparecida Heleno Batista; Daniela B.B. Trivella; Amanda Bernardes; Joyce Gratieri; Paulo Sergio Lopes de Oliveira; Ana Carolina Migliorini Figueira; Paul Webb; Igor Polikarpov
Peroxisome proliferator activated receptors (PPARs δ, α and γ) are closely related transcription factors that exert distinct effects on fatty acid and glucose metabolism, cardiac disease, inflammatory response and other processes. Several groups developed PPAR subtype specific modulators to trigger desirable effects of particular PPARs without harmful side effects associated with activation of other subtypes. Presently, however, many compounds that bind to one of the PPARs cross-react with others and rational strategies to obtain highly selective PPAR modulators are far from clear. GW0742 is a synthetic ligand that binds PPARδ more than 300-fold more tightly than PPARα or PPARγ but the structural basis of PPARδ:GW0742 interactions and reasons for strong selectivity are not clear. Here we report the crystal structure of the PPARδ:GW0742 complex. Comparisons of the PPARδ:GW0742 complex with published structures of PPARs in complex with α and γ selective agonists and pan agonists suggests that two residues (Val312 and Ile328) in the buried hormone binding pocket play special roles in PPARδ selective binding and experimental and computational analysis of effects of mutations in these residues confirms this and suggests that bulky substituents that line the PPARα and γ ligand binding pockets as structural barriers for GW0742 binding. This analysis suggests general strategies for selective PPARδ ligand design.
Molecular Endocrinology | 2014
Paulo C. T. Souza; Ana C. Puhl; Leandro Martínez; Ricardo Aparicio; Alessandro S. Nascimento; Ana Carolina Migliorini Figueira; Phuong Nguyen; P. Webb; Munir S. Skaf; Igor Polikarpov
Thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily of ligand-activated transcription factors involved in cell differentiation, growth, and homeostasis. Although X-ray structures of many nuclear receptor ligand-binding domains (LBDs) reveal that the ligand binds within the hydrophobic core of the ligand-binding pocket, a few studies suggest the possibility of ligands binding to other sites. Here, we report a new x-ray crystallographic structure of TR-LBD that shows a second binding site for T3 and T4 located between H9, H10, and H11 of the TRα LBD surface. Statistical multiple sequence analysis, site-directed mutagenesis, and cell transactivation assays indicate that residues of the second binding site could be important for the TR function. We also conducted molecular dynamics simulations to investigate ligand mobility and ligand-protein interaction for T3 and T4 bound to this new TR surface-binding site. Extensive molecular dynamics simulations designed to compute ligand-protein dissociation constant indicate that the binding affinities to this surface site are of the order of the plasma and intracellular concentrations of the thyroid hormones, suggesting that ligands may bind to this new binding site under physiological conditions. Therefore, the second binding site could be useful as a new target site for drug design and could modulate selectively TR functions.
Cell Biochemistry and Biophysics | 2006
Ana Carolina Migliorini Figueira; Sandra Martha Gomes Dias; Maria M. Santos; James W. Apriletti; John D. Baxter; Paul Webb; Francisco de Assis Rocha Neves; Luiz Alberto Simeoni; Ralff C. J. Ribeiro; Igor Polikarpov
Thyroid hormone nuclear receptors (TRs) bind to DNA and activate transcription as heterodimers with the retinoid X receptor (RXR) or as homodimers or monomers. RXR also binds to DNA and activates transcription as homodimers but can, in addition, self-associate into homotetramers in the absence of ligand and DNA templates. It is thought that homotetramer formation serves to sequester excess RXRs into an inactive pool within the cell. Here, we report systematic studies of the multimeric state of a recombinant human TRβ1 truncation (hTRβ1ΔAB) that encompasses the complete DNA binding domain and ligand binding domain in solution. Native gel electrophoresis, chemical crosslinking, gel filtration, and dynamic light scattering experiments reveal that hTRβ1ΔAB forms a mixture of monomers, dimers, and tetramers. Like RXR, increasing protein concentration shifts the equilibrium between TR multimers toward tetramer formation, whereas binding of cognate thyroid hormone leads to dissociation of tetramers and increased formation of dimers. This work represents the first evidence that apo-hTRβ1 forms homotetramers. The findings raise the possibility that tetramer formation provides an additional, and previously unsuspected, level of control of TR activity and that the capacity for homotetramer formation may be more widespread in the nuclear receptor family than previously thought.
Biochemistry | 2010
Ana Carolina Migliorini Figueira; Luís Maurício T.R. Lima; Leonardo H. F. Lima; Americo T. Ranzani; Guilherme dos Santos Mule; Igor Polikarpov
To shed more light on the molecular requirements for recognition of thyroid response elements (TREs) by thyroid receptors (TRs), we compared the specific aspects of DNA TRE recognition by different TR constructs. Using fluorescence anisotropy, we performed a detailed and hierarchical study of TR-TRE binding. This was done by comparing the binding affinities of three different TR constructs for four different TRE DNA elements, including palindromic sequences and direct repeats (F2, PAL, DR-1, and DR-4) as well as their interactions with nonspecific DNA sequences. The effect of MgCl(2) on suppressing of nonselective DNA binding to TR was also investigated. Furthermore, we determined the dissociation constants of the hTRbeta DBD (DNA binding domain) and hTRbeta DBD-LBD (DNA binding and ligand binding domains) for specific TREs. We found that a minimum DNA recognition peptide derived from DBD (H1TR) is sufficient for recognition and interaction with TREs, whereas scrambled DNA sequences were unrecognized. Additionally, we determined that the TR DBD binds to F2, PAL, and DR-4 with high affinity and similar K(d) values. The TR DBD-LBD recognizes all the tested TREs but binds preferentially to F2, with even higher affinity. Finally, our results demonstrate the important role played by LBDs in modulating TR-DNA binding.
Structure | 2017
Adriana Santos Soprano; Priscila Oliveira de Giuseppe; Hugo Massayoshi Shimo; Tatiani B. Lima; Fernanda Aparecida Heleno Batista; Germanna Lima Righetto; José Geraldo de Carvalho Pereira; Daniela C. Granato; Andrey Fabricio Ziem Nascimento; Fabio C. Gozzo; Paulo Sergio Lopes de Oliveira; Ana Carolina Migliorini Figueira; Juliana Helena Costa Smetana; Adriana Franco Paes Leme; Mario Tyago Murakami; Celso Eduardo Benedetti
MAF1 is the main RNA polymerase (Pol) III repressor that controls cell growth in eukaryotes. The Citrus ortholog, CsMAF1, was shown to restrict cell growth in citrus canker disease but its role in plant development and disease is still unclear. We solved the crystal structure of the globular core of CsMAF1, which reveals additional structural elements compared with the previously available structure of hMAF1, and explored the dynamics of its flexible regions not present in the structure. CsMAF1 accumulated in the nucleolus upon leaf excision, and this translocation was inhibited by auxin and by mutation of the PKA phosphorylation site, S45, to aspartate. Additionally, mTOR phosphorylated recombinant CsMAF1 and the mTOR inhibitor AZD8055 blocked canker formation in normal but not CsMAF1-silenced plants. These results indicate that the role of TOR on cell growth induced by Xanthomonas citri depends on CsMAF1 and that auxin controls CsMAF1 interaction with Pol III in citrus.
Molecular Endocrinology | 2015
Juliana Fattori; Jéssica L.O. Campos; Tábata Renée Doratioto; Lucas M. Assis; Mariela T. Vitorino; Igor Polikarpov; José Xavier-Neto; Ana Carolina Migliorini Figueira
Transcriptional regulation controlled by thyroid hormone receptor (TR) drives events such as development, differentiation, and metabolism. TRs may act either as homodimers or as heterodimers with retinoid X receptor (RXR). Thyroid hormone T3 preferentially binds TR-RXR heterodimers, which activate transcription through coactivator recruitment. However, it is unclear whether TR-RXR heterodimers may also be responsive to the canonical RXR agonist 9-cis retinoic acid (9C) in the context of physiological gene regulation. New structural studies suggest that 9C promotes the displacement of bound coactivators from the heterodimer, modifying TR-RXR activity. To shed light on the molecular mechanisms that control TR-RXR function, we used biophysical approaches to characterize coregulator recruitment to TR-TR or to TR-RXR in the presence of T3 and/or 9C as well as cell-based assays to establish the functional significance of biophysical findings. Using cell-based and fluorescence assays with mutant and wild-type TR, we show that 9C does indeed have a function in the TR-RXR heterodimer context, in which it induces the release of corepressors. Furthermore, we show that 9C does not promote detectable conformational changes in the structure of the TR-RXR heterodimer and does not affect coactivator recruitment. Finally, our data support the view that DNA binding domain and Hinge regions are important to set up NR-coactivator binding interfaces. In summary, we showed that the RXR agonist 9C can regulate TR function through its modulation of corepressor dissociation.