Ana Claudia Tessis
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana Claudia Tessis.
Origins of Life and Evolution of Biospheres | 1999
Ana Claudia Tessis; Andréa Penteado-Fava; Mila Pontes-Buarque; Helio Salim de Amorim; José A. P. Bonapace; Fernando de Souza-Barros; Adalberto Vieyra
Minerals have been implicated in different catalytic processes during chemical evolution. It has been proposed that exergonic synthesis of pyrite (FeS2) could have served to promote the endergonic synthesis of biomonomers in early stages of life formation on Earth. The present study was aimed to investigate whether pyrite can adsorb nucleotides and oxo acids in the potentially mild prebiotic conditions found away from the hot hydrothermal vents. It is shown that pyrite strongly adsorbs adenosine 5′-triphosphate in an artificial medium that simulates primordial aqueous environments, and that adsorption is enhanced in the presence of acetate and in an oxygen-free atmosphere. Moreover, the mineral catalyzes the sequential hydrolysis of the γ and β phosphoanhydride bonds of the nucleotide.
PLOS ONE | 2014
Sayonarah C. Rocha; Marco Túlio C. Pessôa; Luiza Dal-Rios Neves; Silmara L.G. Alves; Luciana Madeira da Silva; H. Santos; Soraya M.F. Oliveira; Alex Gutterres Taranto; Moacyr Comar; Isabella V. Gomes; Fábio Vieira dos Santos; Natasha Paixão; Luis Eduardo M. Quintas; François Noël; Antônio F. Pereira; Ana Claudia Tessis; Natália Lins da Silva Gomes; Otacilio C. Moreira; Ruth Rincon-Heredia; Fernando de Pilla Varotti; Gustavo Blanco; José A. F. P. Villar; Rubén G. Contreras; Leandro Augusto Barbosa
Cardiotonic steroids are used to treat heart failure and arrhythmia and have promising anticancer effects. The prototypic cardiotonic steroid ouabain may also be a hormone that modulates epithelial cell adhesion. Cardiotonic steroids consist of a steroid nucleus and a lactone ring, and their biological effects depend on the binding to their receptor, Na,K-ATPase, through which, they inhibit Na+ and K+ ion transport and activate of several intracellular signaling pathways. In this study, we added a styrene group to the lactone ring of the cardiotonic steroid digoxin, to obtain 21-benzylidene digoxin (21-BD), and investigated the effects of this synthetic cardiotonic steroid in different cell models. Molecular modeling indicates that 21-BD binds to its target Na,K-ATPase with low affinity, adopting a different pharmacophoric conformation when bound to its receptor than digoxin. Accordingly, 21-DB, at relatively high µM amounts inhibits the activity of Na,K-ATPase α1, but not α2 and α3 isoforms. In addition, 21-BD targets other proteins outside the Na,K-ATPase, inhibiting the multidrug exporter Pdr5p. When used on whole cells at low µM concentrations, 21-BD produces several effects, including: 1) up-regulation of Na,K-ATPase expression and activity in HeLa and RKO cancer cells, which is not found for digoxin, 2) cell specific changes in cell viability, reducing it in HeLa and RKO cancer cells, but increasing it in normal epithelial MDCK cells, which is different from the response to digoxin, and 3) changes in cell-cell interaction, altering the molecular composition of tight junctions and elevating transepithelial electrical resistance of MDCK monolayers, an effect previously found for ouabain. These results indicate that modification of the lactone ring of digoxin provides new properties to the compound, and shows that the structural change introduced could be used for the design of cardiotonic steroid with novel functions.
Journal of Natural Products | 2011
Fernanda R. da Silva; Ana Claudia Tessis; Patricia F. Ferreira; Luciana P. Rangel; Aline S. Garcia-Gomes; Fabio R. Pereira; Roberto G. S. Berlinck; Guilherme Muricy; Antonio Ferreira-Pereira
Oroidin was isolated from the marine sponge Agelassventres and inhibited the activity and function of Pdr5p, an enzyme responsible for the multidrug resistance phenotype in Saccharomyces cerevisiae. This compound may help in the development of new drugs that reverse this dangerous phenotype of pathogenic yeast and fungi.
Anais Da Academia Brasileira De Ciencias | 2000
Mila Pontes-Buarque; Ana Claudia Tessis; José A. P. Bonapace; Marisa Bezerra de Melo Monte; Fernando de Souza-Barros; Adalberto Vieyra
There exists an extensive literature on the possible roles of minerals in the prebiotic stages of the chemical evolution of life (Bernal 1951, Cairns-Smith 1982, Wachtershauser 1992, Vieyra et al. 1995, Tessis et al. 1999, see Lahav (1994) for a review). Among the original proposals, minerals have been considered in: (a) processes that would discriminate molecular chirality; (b) condensation reactions of biomolecular precursors; (c) prebiotic catalysis; (d) biochemical templates; and (e) autocatalytic metabolism. In this communication it is emphazised the complex properties of both surface reactions and interfaces between minerals and aqueous solutions simulating Archean scenarios. The properties of pyrite surface net charge and of its interface with a solution simulating primitive seawater are discussed and their implications to the autocatalytic model (Wachtershauser 1988a 1992) are presented in order to demonstrate their relevance. The proposed roles of iron-sulfide minerals (mainly pyrite) as physical support for primitive bidimensional metabolism and chiral discriminator (Wachtershauser 1988a, Huber & Wachtershauser 1998) are revised. It is shown that: (a) the net surface charge can be modulated by the pyrite-aqueous solution interface; (b) mononucleotides attachment to pyrite require a cationic bridge; and (c) direct absorption of acetate - a molecule proposed as carbon source in primitive aqueous environments - also modulates the interface properties and would have masked pyrites bulk structure. These results indicate that physicochemical changes of mineral surfaces - caused by environments simulating Archean aqueous scenarios - should be taken into account in the proposals of mineral prebiotic roles.
Origins of Life and Evolution of Biospheres | 1990
Marcelo Hermes-Lima; Ana Claudia Tessis; Adalberto Vieyra
In this paper it is shown that the adsorption of 5′-adenosine monophosphate (5′-AMP) onto precipitated calcium phosphate exhibits a sigmoidal profile as revealed by isotherms at 45 °C. This result indicates a cooperative behavior in the adsorption of 5′-AMP. The relationship between adsorption capacity and surface area of the sedimented matrix may be interpreted as an indication that there is a monolayer of the adsorbed nucleotide on the solid surface. The pH dependence of adsorption suggests that the negatively charged phosphoryl group of 5′-AMP interacts with a positively charged site (possibly Ca2+) on the matrix surface. The adsorption of the nucleotide is markedly decreased at pH values above 8.0. The Dixon-like plot of the effect of pH suggests an inhibitory role of hydroxyl ions in the adsorption of 5′-AMP. At pH 7.5, other anions such as pyrophosphate, tripolyphosphate and carbamyl phosphate also inhibit the adsorption of the nucleotide, probably by interacting with its adsorption site. We suggest that these phosphorylated molecules could have played a role in chemical evolution by modulating the amount of nucleotides adsorbed onto mineral surfaces. The significance of these phenomena in chemical evolution is discussed.
Journal of Agricultural and Food Chemistry | 2012
Cinzia Lotti; Anna Lisa Piccinelli; Carolina Arevalo; Ines Ruiz; Gabriellen Menezes Migliani de Castro; Leandro Figueira Reis de Sá; Ana Claudia Tessis; Antonio Ferreira-Pereira; Luca Rastrelli
Chemical investigation of a propolis sample collected in Honduras has led to the isolation of the new (E,Z)-cinnamyl cinnamate (2) together with 14 known compounds: 6 cinnamic ester derivatives, 2 flavanones, 1 chalcone, 2 triterpenes, and 3 aromatic acids. Structural determination was accomplished by spectroscopic analysis, particularly two-dimensional (2D) nuclear magnetic resonance (NMR) and electrospray ionization-tandem mass spectrometry (ESI-MS/MS) techniques. Futhermore, we checked the ability of the propolis extract and the most representative compounds of each class (1, 5, 8, and 10) to inhibit the activity of Pdr5p, a protein responsible for a multidrug resistance phenotype in yeast. The present study appears to be the first report on Honduras propolis. Isolated cinnamic ester derivatives indicated the possible relation between Honduras propolis and the genus Liquidambar .
Origins of Life and Evolution of Biospheres | 1995
Ana Claudia Tessis; Helio Salim de Amorim; Marcos Farina; Fernando de Souza-Barros; Adalberto Vieyra
A non-enzymatic formation of 5′-ADP starting from phosphorylation of 5′-AMP in the presence of either calcium phosphate or calcium pyrophosphate precipitates is reported. This reaction is taken as a model for the study of heterogeneous catalysis of transphosphorylation in prebiotic conditions. Experiments were performed in completely aqueous media and in media containing dimethyl sulfoxide (Me2S0), to simulate periods of dehydration in primitive aquatic environments. It has been observed that the nucleotide is adsorbed onto both calcium phosphate and calcium pyrophosphate in accordance with Langmuir isotherms. Adsorptive capacity and affinity of the precipitates for nucleotide are changed by the presence of Me2SO, suggesting that the interaction between biomonomers and surfaces can be modulated by the degree of hydration of the anionic components of these compounds. In completely aqueous environments, formation of 5′-ADP from 5′-AMP adsorbed on precipitates of calcium phosphate and calcium pyrophosphate is very small. However, in the presence of 60% Me2SO this synthesis increases by factors of 3 and 6 for surfaces of calcium phosphate and calcium pyrophosphate, respectively, and follows first-order kinetics. Determinations of free energy changes show that phosphorylation of 5′-AMP adsorbed to these precipitates is thermodynamically favorable. Depending on the precipitation time of the samples and the composition of the medium, structural analysis of these precipitates by electron and X-ray diffraction shows changes in their cristallinity grade. It is proposed that these changes are responsible for the modulation of the quantity of adsorbed nucleotides to the surface of solid matrices as well as the catalytic activity of the precipitates.
Revista Brasileira De Farmacognosia-brazilian Journal of Pharmacognosy | 2011
Cinzia Lotti; Gabriellen Menezes Migliani de Castro; Leandro Figueira Reis de Sá; Beatriz dos Anjos Fonseca Sampaio da Silva; Ana Claudia Tessis; Anna Lisa Piccinelli; Luca Rastrelli; Antonio Ferreira-Pereira
Multidrug resistance of cancer cells and pathogenic microorganisms leading to the treatment failure of some forms of cancer or life-threatening bacterial or fungal infections is often caused by the overexpression of multidrug efflux pumps belonging to the ATP-binding cassette transporters superfamily. The multidrug resistance of fungal cells often involves the overexpression of efflux pumps belonging to the pleiotropic drug resistance (PDR) family of ABC transporters. Possibly the best-studied fungal PDR transporter is the multidrug resistance transporter Pdr5p of Saccharomyces cerevisiae. Some research groups have been searching for new inhibitors of these efflux pumps in order to alleviate resistance. Natural products are a great source for the discovery of new compounds with biological activity. Propolis is a complex resinous material collected by honeybees from exudates and buds of certain plant sources and this material is thought to serve as a defense substance for bee hives. Propolis is widely used in traditional medicine and is reported to have a broad spectrum of pharmacological properties. Literature reported some biological functionalities of propolis, such as antibacterial, antiviral, fungicidal, anti-inflammatory and anti-carcinogenic activities. The chemical composition of propolis is qualitatively and quantitatively variable. Components isolated from methanolic extract of red Brazilian propolis (Alagoas, Northeast of Brazil) are isoflavonoids (including pterocarpans, isoflavans, isoflavones), flavanones and polyprenylated benzophenones. In this work we demonstrated the effects of five different isolated compounds on the ATPase activity of Pdr5p. Out of all five substances tested, only BRP-1 was able to completely abolish the enzymatic activity while others worked as positive modulators of the enzyme activity. BRP-1also inhibited the efflux of Rhodamine 6G from yeast cells overexpressing Pdr5p. Taken together, these results demonstrate that Brazilian propolis could be a source of promising compounds that can alleviate the MDR phenomenon, particularly in some fungi, where it could be used as an adjuvant for the treatment with azoles.
Journal of Molecular Evolution | 1996
Ana Claudia Tessis; Adalberto Vieyra
The adsorption of 5′-AMP onto precipitated calcium phosphate (CaPi) requires the presence of soluble calcium and this dependence exhibits a Michaelian-like behavior. This result suggests that the formation of a complex between 5′-AMP and free Ca2+ (CaAMP) is a prelude to the adsorption of the nucleotide in the solid matrix. At concentrations one order of magnitude higher, Mn2+ and Mg2+ can substitute for soluble Ca2+ in the adsorption of 5′-AMP onto solid CaPi. However, when added simultaneously with 5′-AMP to a heterogeneous mixture that contains CaPi and soluble Ca2+, Mn2+ and Mg2+ inhibit the adsorption of 5′-AMP in a concentration-dependent manner. This suggests the formation of complexes that are much less effective for 5′-AMP adsorption than the CaAMP complex. On the other hand, Mn2+ and Mg2+ cannot promote desorption of the nucleotide attached to the precipitate in the presence of soluble Ca2+ if they are added after adsorption has attained equilibrium. Although desorption of 5′-AMP can be obtained by a sequential dilution of the soluble phase with buffer and no nucleotide in a process that obeys a Langmuir equation, the lack of effect of Mn2+ or Mg2+ when adsorption has attained its maximal value suggests strong interactions between the CaAMP complex and the solid matrix when adsorption equilibrium is reached. The divalent cations present in the matrix also participate with different selectivity in the attachment of the CaAMP complex, indicating that a cation-exchange mechanism could have acted in the modulation of adsorptive/desorptive processes involving biomonomers and phosphate surfaces in primitive aqueous environment.
Journal of Molecular Evolution | 1997
Marcelo Hermes-Lima; Ana Claudia Tessis; Glória Costa Sarmento; Adalberto Vieyra
Abstract. Phospho(enol)pyruvate (PEP) undergoes transphosphorylation to form pyrophosphate (PPi) and adenosine 5′-diphosphate (5′-ADP) with high yields in the presence of an adsorbent surface of calcium phosphate (Pi.Ca), which is considered to be an ancient mineral with catalytic properties. PPi formation is a result of the phosphorolytic cleavage of the enol phosphate group of PEP by precipitated Pi. The synthesis of PPi is dependent on the amount of the solid matrix; it increases with the amount of adsorbed PEP and upon addition of dimethyl sulfoxide (Me2SO), a molecule with high dipolar moment. Although it is saturated with PEP at neutral pH, the phosphorylating Pi.Ca surface becomes effective only in alkaline conditions. In a parallel reaction, PEP phosphorylates 5′-AMP to 5′-ADP with a yield that is sevenfold higher in the presence of the Pi.Ca surface than in its absence, indicating that the solid matrix promotes interaction between adsorbed molecules with a high potential for phosphoryl transfer. In contrast to phosphorolysis, this latter reaction is stimulated by Me2SO only in homogeneous solution. It is concluded that phosphate minerals may have coadjuvated in reactions involving different phosphorylated compounds and that molecules with high dipolar moment may have acted in mildly alkaline, primitive aqueous environments to modulate phosphoryl transfer reactions catalyzed by phosphate minerals.