Ana David-Pereira
RMIT University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana David-Pereira.
PLOS ONE | 2014
Diana Amorim; Ana David-Pereira; Patricia X. Marques; Sónia Puga; Patrícia Rebelo; Patrício Costa; Antti Pertovaara; Armando Almeida; Filipa Pinto-Ribeiro
Introduction In chronic pain disorders, galanin (GAL) is able to either facilitate or inhibit nociception in the spinal cord but the contribution of supraspinal galanin to pain signalling is mostly unknown. The dorsomedial nucleus of the hypothalamus (DMH) is rich in galanin receptors (GALR) and is involved in behavioural hyperalgesia. In this study, we evaluated the contribution of supraspinal GAL to behavioural hyperalgesia in experimental monoarthritis. Methods In Wistar-Han males with a four week kaolin/carrageenan-induced monoarthritis (ARTH), paw-withdrawal latency (PWL) was assessed before and after DMH administration of exogenous GAL, a non-specific GALR antagonist (M40), a specific GALR1 agonist (M617) and a specific GALR2 antagonist (M871). Additionally, the analysis of c-Fos expression after GAL injection in the DMH was used to investigate the potential involvement of brainstem pain control centres. Finally, electrophysiological recordings were performed to evaluate whether pronociceptive On- or antinociceptive Off-like cells in the rostral ventromedial medulla (RVM) relay the effect of GAL. Results Exogenous GAL in the DMH decreased PWL in ARTH and SHAM animals, an effect that was mimicked by a GALR1 agonist (M617). In SHAM animals, an unselective GALR antagonist (M40) increased PWL, while a GALR2 antagonist (M871) decreased PWL. M40 or M871 failed to influence PWL in ARTH animals. Exogenous GAL increased c-Fos expression in the RVM and dorsal raphe nucleus (DRN), with effects being more prominent in SHAM than ARTH animals. Exogenous GAL failed to influence activity of RVM On- or Off-like cells of SHAM and ARTH animals. Conclusions Overall, exogenous GAL in the DMH had a pronociceptive effect that is mediated by GALR1 in healthy and arthritic animals and is associated with alterations of c-Fos expression in RVM and DRN that are serotonergic brainstem nuclei known to be involved in the regulation of pain.
Nature Communications | 2016
Carina Soares-Cunha; B. Coimbra; Ana David-Pereira; S. Borges; Luísa Pinto; Patrício Costa; Nuno Sousa; Ana João Rodrigues
Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1–D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated.
Behavioural Brain Research | 2014
Diana Amorim; Ana David-Pereira; Antti Pertovaara; Armando Almeida; Filipa Pinto-Ribeiro
Affective disorders are common comorbidities of chronic inflammatory pain that are often overlooked in primary care. As the impact of inflammatory pain upon mood-like disorders in animal models is not well known, our objective was to assess whether prolonged experimental monoarthritis (ARTH) induced the development of anxiety and depressive-like behaviours in rodents and if amitriptyline, an antidepressant commonly used in the treatment of chronic pain, could reverse both nociceptive and mood-like impairments. Experimental ARTH was induced through an injection of kaolin/carrageenan into the right knee joint with control (SHAM) animals injected with saline. Four weeks after induction, ARTH animals displayed mechanical hyperalgesia and a depressive-like phenotype as they showed a significant increase in immobility and a decrease in the latency to immobility in the forced-swimming test at the expense of the time spent climbing/swimming. ARTH animals also displayed a decreased sucrose preference, an index of anhedonia and anxiety-like behaviour as time spent exploring the open arms of the elevated-plus-maze was decreased when compared to controls. The anxiety-like phenotype was also supported by an increase in the number of fecal boli left in the open field. In ARTH animals, the administration of amitriptyline decreased mechanical hyperalgesia and increased sucrose preference and the time spent climbing, although it had a deleterious effect in the performance of control animals. Our data show that this model of ARTH can be useful for the study of chronic pain-mood disorders comorbidities and that amitriptyline is able to partly reverse the associated nociceptive and emotional impairments.
Frontiers in Behavioral Neuroscience | 2013
Ashley Novais; Ana Catarina Ferreira; Fernanda Marques; José M. Pêgo; João José Cerqueira; Ana David-Pereira; Filipa Lopes Campos; Christina Dalla; Nikolaos Kokras; Nuno Sousa; Joana Almeida Palha; João Sousa
Neudesin (also known as neuron derived neurotrophic factor, Nenf) is a scarcely studied putative non-canonical neurotrophic factor. In order to understand its function in the brain, we performed an extensive behavioral characterization (motor, emotional, and cognitive dimensions) of neudesin-null mice. The absence of neudesin leads to an anxious-like behavior as assessed in the elevated plus maze (EPM), light/dark box (LDB) and novelty suppressed feeding (NSF) tests, but not in the acoustic startle (AS) test. This anxious phenotype is associated with reduced dopaminergic input and impoverished dendritic arborizations in the dentate gyrus granule neurons of the ventral hippocampus. Interestingly, shorter dendrites are also observed in the bed nucleus of the stria terminalis (BNST) of neudesin-null mice. These findings lead us to suggest that neudesin is a novel relevant player in the maintenance of the anxiety circuitry.
Neuroscience | 2016
Ana David-Pereira; Sónia Puga; S. Gonçalves; Diana Amorim; C. Silva; Antti Pertovaara; Armando Almeida; Filipa Pinto-Ribeiro
The involvement of the prefrontal cortex in pain processing has been recently addressed. We studied the role of the infralimbic cortex (IL) and group I metabotropic glutamate receptors (mGluRs) in descending modulation of nociception in control and monoarthritic (ARTH) conditions. Nociception was assessed using heat-induced paw withdrawal while drugs were microinjected in the IL of rats. Local anesthesia of the IL or the adjacent prelimbic cortex (PL) facilitated nociception, indicating that IL and PL are tonically promoting spinal antinociception. Phasic activation with glutamate (GLU) revealed opposing roles of the PL and IL; GLU in the PL had a fast antinociceptive action, while in the IL it had a slow onset pronociceptive action. IL administration of a local anesthetic or GLU produced identical results in ARTH and control animals. An mGluR5 agonist in the IL induced a pronociceptive effect in both groups, while mGluR5 antagonists had no effect in controls but induced antinociception in ARTH rats. Activation of the IL mGluR1 (through co-administration of mGluR1/5 agonist and mGluR5 antagonist) did not alter nociception in controls but induced antinociception in ARTH animals. IL administration of an mGluR1 antagonist failed to alter nociception in either experimental group. Finally, mGluR5 but not mGluR1 antagonists blocked the pronociceptive action of GLU in both groups. The results indicate that IL contributes to descending modulation of nociception. mGluR5 in the IL enhance nociception in healthy control and monoarthritic animals, an effect that is tonic in ARTH. Moreover, activation of IL mGluR1s attenuates nociception following the development of monoarthritis.
Brain Research Bulletin | 2013
Filipa Pinto-Ribeiro; Diana Amorim; Ana David-Pereira; Ana Maria Monteiro; Patrício Costa; Antti Pertovaara; Armando Almeida
The dorsomedial nucleus of the hypothalamus (DMH) has been proposed to participate in stress-induced hyperalgesia through facilitation of pronociceptive cells in the rostroventromedial medulla (RVM). We hypothesized that the DMH participates in hyperalgesia induced by arthritis. The DMH was pharmacologically manipulated while assessing heat-evoked nociceptive behavior or the discharge rates of pronociceptive RVM ON- and antinociceptive RVM OFF-like cells in NAIVE, SHAM and monoarthritic (ARTH) animals. In NAIVE and SHAM animals, the changes in nociceptive behavior induced by activation of the DMH by glutamate and inhibition by lidocaine were in line with earlier evidence indicating that the DMH has a nociceptive facilitating role. However, in ARTH animals, neither activation nor inhibition of the DMH influenced pain-like behavior evoked by stimulation of an uninflamed skin region (paw and tail). In accordance with these behavioral results, activation or inhibition of the DMH induced pronociceptive changes in the discharge rates of RVM cells in NAIVE and SHAM animals, which suggests that the DMH has a pronociceptive role mediated by the RVM in normal animals. However, in ARTH animals, both glutamate and lidocaine in the DMH failed to influence either pain-like behavior or noxious stimulation-evoked responses of RVM cells, while blocking the DMH increased spontaneous activity in the pronociceptive RVM ON cells. Our data indicate that the DMH participates in descending facilitation of cutaneous nociception in healthy controls, but it is not engaged in the regulation of cutaneous nociception in monoarthritic animals, while a minor role in tonic suppression of nociception in arthritis cannot be discarded.
Neuroscience | 2017
Ana David-Pereira; Boriss Sagalajev; Hong Wei; Armando Almeida; Antti Pertovaara; Filipa Pinto-Ribeiro
Metabotropic glutamate receptor 5 (mGluR5) activation in the infralimbic cortex (IL) induces pronociceptive behavior in healthy and monoarthritic rats. Here we studied whether the medullary dorsal reticular nucleus (DRt) and the spinal TRPV1 are mediating the IL/mGluR5-induced spinal pronociception and whether the facilitation of pain behavior is correlated with changes in spinal dorsal horn neuron activity. For drug administrations, all animals had a cannula in the IL as well as a cannula in the DRt or an intrathecal catheter. Heat-evoked paw withdrawal was used to assess pain behavior in awake animals. Spontaneous and heat-evoked discharge rates of single DRt neurons or spinal dorsal horn wide-dynamic range (WDR) and nociceptive-specific (NS) neurons were evaluated in lightly anesthetized animals. Activation of the IL/mGluR5 facilitated nociceptive behavior in both healthy and monoarthritic animals, and this effect was blocked by lidocaine or GABA receptor agonists in the DRt. IL/mGluR5 activation increased spontaneous and heat-evoked DRt discharge rates in healthy but not monoarthritic rats. In the spinal dorsal horn, IL/mGluR5 activation increased spontaneous activity of WDR neurons in healthy animals only, whereas heat-evoked responses of WDR and NS neurons were increased in both experimental groups. Intrathecally administered TRPV1 antagonist prevented the IL/mGluR5-induced pronociception in both healthy and monoarthritic rats. The results suggest that the DRt is involved in relaying the IL/mGluR5-induced spinal pronociception in healthy control but not monoarthritic animals. Spinally, the IL/mGluR5-induced behavioral heat hyperalgesia is mediated by TRPV1 and associated with facilitated heat-evoked responses of WDR and NS neurons.
PLOS ONE | 2014
Diana Amorim; Ana David-Pereira; Patrícia Isabel Marques; Sónia Puga; Patrícia Rebelo; Patrício Costa; Antti Pertovaara; Armando Almeida; Filipa Pinto-Ribeiro
European Neuropsychopharmacology | 2016
Carina Soares-Cunha; B. Coimbra; Ana David-Pereira; L. Pinto; Patrício Costa; Nuno Sousa; A.J. Rodrigues
European Neuropsychopharmacology | 2016
Carina Soares-Cunha; B. Coimbra; Ana David-Pereira; L. Pinto; Patrício Costa; Nuno Sousa; A.J. Rodrigues