Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana F. Branco is active.

Publication


Featured researches published by Ana F. Branco.


Journal of Pharmacology and Experimental Therapeutics | 2007

Mitochondrially Targeted Effects of Berberine [Natural Yellow 18, 5,6-dihydro-9,10-dimethoxybenzo(g)-1,3-benzodioxolo(5,6-a) quinolizinium] on K1735-M2 Mouse Melanoma Cells: Comparison with Direct Effects on Isolated Mitochondrial Fractions

Gonçalo C. Pereira; Ana F. Branco; Júlio A.C. Matos; Sandro L. Pereira; Donna Parke; Edward Perkins; Teresa L. Serafim; Vilma A. Sardão; Maria S. Santos; António J. Moreno; Jon Holy; Paulo J. Oliveira

Berberine [Natural Yellow 18, 5,6-dihydro-9,10-dimethoxybenzo(g)-1,3-benzodioxolo(5,6-a)quinolizinium] is an alkaloid present in plant extracts and has a history of use in traditional Chinese and Native American medicine. Because of its ability to arrest the cell cycle and cause apoptosis of several malignant cell lines, it has received attention as a potential anticancer therapeutic agent. Previous studies suggest that mitochondria may be an important target of berberine, but relatively little is known about the extent or molecular mechanisms of berberine-mitochondrial interactions. The objective of the present work was to investigate the interaction of berberine with mitochondria, both in situ and in isolated mitochondrial fractions. The data show that berberine is selectively accumulated by mitochondria, which is accompanied by arrest of cell proliferation, mitochondrial fragmentation and depolarization, oxidative stress, and a decrease in ATP levels. Electron microscopy of berberine-treated cells shows a reduction in mitochondria-like structures, accompanied by a decrease in mitochondrial DNA copy number. Isolated mitochondrial fractions treated with berberine had slower mitochondrial respiration, especially when complex I substrates were used, and increased complex I-dependent oxidative stress. It is also demonstrated for the first time that berberine stimulates the mitochondrial permeability transition. Direct effects on ATPase activity were not detected. The present work demonstrates a number of previously unknown alterations of mitochondrial physiology induced by berberine, a potential chemotherapeutic agent, although it also suggests that high doses of berberine should not be used without a proper toxicology assessment.


Cell Death & Differentiation | 2014

Mitochondrial metabolism directs stemness and differentiation in P19 embryonal carcinoma stem cells

Ignacio Vega-Naredo; Rute Loureiro; Katia A. Mesquita; Inês A. Barbosa; Ludgero C. Tavares; Ana F. Branco; J R Erickson; Jon Holy; Ed Perkins; Rui A. Carvalho; Paulo J. Oliveira

The relationship between mitochondrial metabolism and cell viability and differentiation in stem cells (SCs) remains poorly understood. In the present study, we compared mitochondrial physiology and metabolism between P19SCs before/after differentiation and present a unique fingerprint of the association between mitochondrial activity, cell differentiation and stemness. In comparison with their differentiated counterparts, pluripotency of P19SCs was correlated with a strong glycolytic profile and decreased mitochondrial biogenesis and complexity: round, low-polarized and inactive mitochondria with a closed permeability transition pore. This decreased mitochondrial capacity increased their resistance against dichloroacetate. Thus, stimulation of mitochondrial function by growing P19SCs in glutamine/pyruvate-containing medium reduced their glycolytic phenotype, induced loss of pluripotent potential, compromised differentiation and became P19SCs sensitive to dichloroacetate. Because of the central role of this type of SCs in teratocarcinoma development, our findings highlight the importance of mitochondrial metabolism in stemness, proliferation, differentiation and chemoresistance. In addition, the present work suggests the regulation of mitochondrial metabolism as a tool for inducing cell differentiation in stem line therapies.


Cardiovascular Toxicology | 2011

Isoproterenol Cytotoxicity is Dependent on the Differentiation State of the Cardiomyoblast H9c2 Cell Line

Ana F. Branco; Sandro L. Pereira; Ana C. Moreira; Jon Holy; Vilma A. Sardão; Paulo J. Oliveira

H9c2 cells are used as a surrogate for cardiac cells in several toxicological studies, which are usually performed with cells in their undifferentiated state, raising questions on the applicability of the results to adult cardiomyocytes. Since H9c2 myoblasts have the capacity to differentiate into skeletal and cardiac muscle cells under different conditions, the hypothesis of the present work was that cells in different differentiation states differ in their susceptibility to toxicants. In order to test the hypothesis, the effects of the cardiotoxicant isoproterenol (ISO) were investigated. The present work demonstrates that differentiated H9c2 cells are more susceptible to ISO toxicity. Cellular content of beta1-adrenergic receptors (AR), beta3-AR, and calcineurin is decreased as cells differentiate, as opposed to the content on the mitochondrial voltage-dependent anion channel (VDAC) and phosphorylated p38-MAPK, which increase. After ISO treatment, the pro-apoptotic protein Bax increases in all experimental groups, although only undifferentiated myoblasts up-regulate the anti-apoptotic Bcl-2. Calcineurin is decreased in differentiated H9c2 cells, which suggests an important role against ISO-induced cell death. The results indicate that the differentiation state of H9c2 myoblasts influence ISO toxicity, which may involve calcineurin, p38-MAPK, and Bax/Bcl-2 alterations. The data also provide new insights into cardiovascular toxicology during early development.


Biochemical Pharmacology | 2008

Sanguinarine cytotoxicity on mouse melanoma K1735-M2 cells—Nuclear vs. mitochondrial effects

Teresa L. Serafim; Júlio A.C. Matos; Vilma A. Sardão; Gonçalo C. Pereira; Ana F. Branco; Sandro L. Pereira; Donna Parke; Edward Perkins; António J. Moreno; Jon Holy; Paulo J. Oliveira

Sanguinarine (SANG) is an alkaloid recognized to have anti-proliferative activity against various human tumour cell lines. No data is available on the susceptibility of advanced malignant melanoma to SANG, although this disease has a very poor prognosis if not detected in time due to the resistance to conventional chemotherapy. The present work was designed to study the nuclear and mitochondrial involvement in the pro-apoptotic effect of SANG in an invasive mouse melanoma cell line. The results obtained show that SANG is primarily accumulated by the cell nuclei, causing inhibition of cell proliferation and inducing cell death, as confirmed by an increase in sub-G1 peaks. At low concentrations, SANG induces mitochondrial depolarization in a sub-population of melanoma cells, which also generally displayed strong nuclear labelling of phosphorylated histone H2AX. Western blotting revealed an increase in p53, but not Bax protein, in both whole-cell extracts and in mitochondrial fractions. Isolated hepatic mitochondrial fractions revealed that SANG affects the mitochondrial respiratory chain, and has dual effects on mitochondrial calcium loading capacity. We suggest that SANG is able to induce apoptosis in metastatic melanoma cells. The knowledge of mitochondrial vs. nuclear effects of SANG is important in the development of this promising compound for clinical use against aggressive melanoma.


Cardiovascular Toxicology | 2011

Metabolic remodeling during H9c2 myoblast differentiation: relevance for in vitro toxicity studies.

Sandro L. Pereira; João Ramalho-Santos; Ana F. Branco; Vilma A. Sardão; Paulo J. Oliveira; Rui A. Carvalho

H9c2 cells, derived from the ventricular part of an E13 BDIX rat heart, possess a proliferative and relatively undifferentiated phenotype but can be readily directed to differentiate under reduced serum conditions originating cells presenting muscle features. Skeletal or cardiac phenotypes can be originated depending on whether or not serum reduction is accompanied by a daily treatment with all-trans-retinoic acid. In the present study, we aimed to characterize and compare the metabolic profile of H9c2 cells at various differentiation states, correlating the differences between different populations with muscle-specific development. We determined that H9c2 myoblasts remodel their metabolism upon differentiation, with undifferentiated cells more reliant on glycolysis, as demonstrated by higher lactate production rates. Differentiated cells adopted a more oxidative metabolism with better coupling between the glycolytic and oxidative pathways, which is indicative of a metabolic evolvement toward a higher energetic efficiency state. Our findings emphasize the metabolic differences between differentiated and undifferentiated H9c2 cells and raise caution on how to adequately select the H9c2 differentiation state that will act as the better model for the design of experimental studies.


European Journal of Clinical Investigation | 2016

Ketogenic diets: from cancer to mitochondrial diseases and beyond

Ana F. Branco; André F. Ferreira; Rui F. Simões; Silvia Magalhães-Novais; Cheryl Zehowski; Elisabeth Cope; Ana Marta Silva; Daniela Pereira; Vilma A. Sardão; Teresa Cunha-Oliveira

The employment of dietary strategies such as ketogenic diets, which force cells to alter their energy source, has shown efficacy in the treatment of several diseases. Ketogenic diets are composed of high fat, moderate protein and low carbohydrates, which favour mitochondrial respiration rather than glycolysis for energy metabolism.


PLOS ONE | 2015

Gene Expression Profiling of H9c2 Myoblast Differentiation towards a Cardiac-Like Phenotype

Ana F. Branco; Susana P. Pereira; Susana Gonzalez; Oleg Gusev; Albert A. Rizvanov; Paulo J. Oliveira

H9c2 myoblasts are a cell model used as an alternative for cardiomyocytes. H9c2 cells have the ability to differentiate towards a cardiac phenotype when the media serum is reduced in the presence of all-trans-retinoic acid (RA), creating multinucleated cells with low proliferative capacity. In the present study, we performed for the first time a transcriptional analysis of the H9c2 cell line in two differentiation states, i.e. embryonic cells and differentiated cardiac-like cells. The results show that RA-induced H9c2 differentiation increased the expression of genes encoding for cardiac sarcomeric proteins such as troponin T, or calcium transporters and associated machinery, including SERCA2, ryanodine receptor and phospholamban as well as genes associated with mitochondrial energy production including respiratory chain complexes subunits, mitochondrial creatine kinase, carnitine palmitoyltransferase I and uncoupling proteins. Undifferentiated myoblasts showed increased gene expression of pro-survival proteins such as Bcl-2 as well as cell cycle-regulating proteins. The results indicate that the differentiation of H9c2 cells lead to an increase of transcripts and protein levels involved in calcium handling, glycolytic and mitochondrial metabolism, confirming that H9c2 cell differentiation induced by RA towards a more cardiac-like phenotype involves remodeled mitochondrial function. PI3K, PDK1 and p-CREB also appear to be involved on H9c2 differentiation. Furthermore, complex analysis of differently expressed transcripts revealed significant up-regulation of gene expression related to cardiac muscle contraction, dilated cardiomyopathy and other pathways specific for the cardiac tissue. Metabolic and gene expression remodeling impacts cell responses to different stimuli and determine how these cells are used for biochemical assays.


Cardiovascular Toxicology | 2012

Differentiation-Dependent Doxorubicin Toxicity on H9c2 Cardiomyoblasts

Ana F. Branco; Susana F. Sampaio; Ana C. Moreira; Jon Holy; Kendall B. Wallace; Inês Baldeiras; Paulo J. Oliveira; Vilma A. Sardão

A characteristic component of the anti-neoplastic doxorubicin (DOX)-induced cardiac toxicity is the delayed and persistent toxicity, with cancer childhood survivors developing cardiac failure later in life. The mechanisms behind this persistent toxicity are unknown, although one of the consequences of early childhood treatment with DOX is a specific removal of cardiac progenitor cells. DOX treatment may be more toxic to undifferentiated muscle cells, contributing to impaired cardiac development and toxicity persistence. H9c2 myoblasts, a rat embryonic cell line, which has the ability to differentiate into a skeletal or cardiac muscle phenotype, can be instrumental in understanding DOX cytotoxicity in different differentiation stages. H9c2 cell differentiation results in decreased cell proliferation and increased expression of a differentiated muscle marker. Differentiated H9c2 cells accumulated more DOX and were more susceptible to DOX-induced cytotoxicity. Differentiated cells had increased levels of mitochondrial superoxide dismutase and Bcl-xL, an anti-apoptotic protein. Of critical importance for the mechanisms of DOX toxicity, p53 appeared to be equally activated regardless of the differentiation state. We suggest that although more differentiated H9c2 muscle cells appear to have more basal mechanisms that would predict higher protection, DOX toxicity is higher in the differentiated population. The results are instrumental in the understanding of stress responses of this specific cell line in different differentiation stages to the cardiotoxicity caused by anthracyclines.


Biochimica et Biophysica Acta | 2014

Mitochondrial apoptosis-inducing factor is involved in doxorubicin-induced toxicity on H9c2 cardiomyoblasts

Ana C. Moreira; Ana F. Branco; Susana F. Sampaio; Teresa Cunha-Oliveira; Tatiana R. Martins; Jon Holy; Paulo J. Oliveira; Vilma A. Sardão

The cardiotoxicity induced by the anti-cancer doxorubicin involves increased oxidative stress, disruption of calcium homeostasis and activation of cardiomyocyte death. Nevertheless, antioxidants and caspase inhibitors often show little efficacy in preventing cell death. We hypothesize that a caspase-independent cell death mechanism with the release of the apoptosis-inducing factor from mitochondria is involved in doxorubicin toxicity. To test the hypothesis, H9c2 cardiomyoblasts were used as model for cardiac cells. Our results demonstrate that z-VAD-fmk, a pan-caspase inhibitor, does not prevent doxorubicin toxicity in this cell line. Doxorubicin treatment results in AIF translocation to the nuclei, as confirmed by Western Blotting of cell fractions and confocal microscopy. Also, doxorubicin treatment of H9c2 cardiomyoblasts resulted in the appearance of 50kbp DNA fragments, a hallmark of apoptosis-inducing factor nuclear effects. Apoptosis-inducing factor knockdown using a small-interfering RNA approach in H9c2 cells resulted in a reduction of doxorubicin toxicity, including decreased p53 activation and poly-ADP-ribose-polymerase cleavage. Among the proteases that could be responsible for apoptosis-inducing factor cleavage, doxorubicin decreased calpain activity but increased cathepsin B activation, with inhibition of the latter partly decreasing doxorubicin toxicity. Altogether, the results support that apoptosis-inducing factor release is involved in doxorubicin-induced H9c2 cell death, which explains the limited ability of caspase inhibitors to prevent toxicity.


The International Journal of Biochemistry & Cell Biology | 2013

Mitochondrial disruption occurs downstream from β-adrenergic overactivation by isoproterenol in differentiated, but not undifferentiated H9c2 cardiomyoblasts: Differential activation of stress and survival pathways

Ana F. Branco; Susana F. Sampaio; Mariusz R. Wieckowski; Vilma A. Sardão; Paulo J. Oliveira

β-Adrenergic receptor stimulation plays an important role in cardiomyocyte stress responses, which may result in apoptosis and cardiovascular degeneration. We previously demonstrated that toxicity of the β-adrenergic agonist isoproterenol on H9c2 cardiomyoblasts depends on the stage of cell differentiation. We now investigate β-adrenergic receptor downstream signaling pathways and stress responses that explain the impact of muscle cell differentiation on hyper-β-adrenergic stimulation-induced cytotoxicity. When incubated with isoproterenol, differentiated H9c2 muscle cells have increased cytosolic calcium, cyclic-adenosine monophosphate content and oxidative stress, as well as mitochondrial depolarization, increased superoxide anion, loss of subunits from the mitochondrial respiratory chain, decreased Bcl-xL content, increased p53 and phosphorylated-p66Shc as well as activated caspase-3. Undifferentiated H9c2 cells incubated with isoproterenol showed increased Bcl-xL protein and increased superoxide dismutase 2 which may act as protective mechanisms. We conclude that the differentiation of H9c2 is associated with differential regulation of stress responses, which impact the toxicity of several agents, namely those acting through β-adrenergic receptors and resulting in mitochondrial disruption in differentiated cells only.

Collaboration


Dive into the Ana F. Branco's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jon Holy

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge