Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana Falcón is active.

Publication


Featured researches published by Ana Falcón.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Lack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret model.

Taronna R. Maines; Li-Mei Chen; Yumiko Matsuoka; Hualan Chen; Thomas Rowe; Juan Ortín; Ana Falcón; Nguyen Tran Hien; Le Quynh Mai; Endang R. Sedyaningsih; Syahrial Harun; Terrence M. Tumpey; Ruben O. Donis; Nancy J. Cox; Kanta Subbarao; Jacqueline M. Katz

Avian influenza A H5N1 viruses continue to spread globally among birds, resulting in occasional transmission of virus from infected poultry to humans. Probable human-to-human transmission has been documented rarely, but H5N1 viruses have not yet acquired the ability to transmit efficiently among humans, an essential property of a pandemic virus. The pandemics of 1957 and 1968 were caused by avian–human reassortant influenza viruses that had acquired human virus-like receptor binding properties. However, the relative contribution of human internal protein genes or other molecular changes to the efficient transmission of influenza viruses among humans remains poorly understood. Here, we report on a comparative ferret model that parallels the efficient transmission of H3N2 human viruses and the poor transmission of H5N1 avian viruses in humans. In this model, an H3N2 reassortant virus with avian virus internal protein genes exhibited efficient replication but inefficient transmission, whereas H5N1 reassortant viruses with four or six human virus internal protein genes exhibited reduced replication and no transmission. These findings indicate that the human virus H3N2 surface protein genes alone did not confer efficient transmissibility and that acquisition of human virus internal protein genes alone was insufficient for this 1997 H5N1 virus to develop pandemic capabilities, even after serial passages in a mammalian host. These results highlight the complexity of the genetic basis of influenza virus transmissibility and suggest that H5N1 viruses may require further adaptation to acquire this essential pandemic trait.


Journal of Virology | 2004

Defective RNA Replication and Late Gene Expression in Temperature-Sensitive Influenza Viruses Expressing Deleted Forms of the NS1 Protein

Ana Falcón; Rosa María Marión; Thomas Zürcher; Paulino Gómez; Agustín Portela; Amelia Nieto; Juan Ortín

ABSTRACT Influenza A virus mutants expressing C-terminally deleted forms of the NS1 protein (NS1-81 and NS1-110) were generated by plasmid rescue. These viruses were temperature sensitive and showed a small plaque size at the permissive temperature. The accumulation of virion RNA in mutant virus-infected cells was reduced at the restrictive temperature, while the accumulation of cRNA or mRNA was not affected, indicating that the NS1 protein is involved in the control of transcription versus replication processes in the infection. The synthesis and accumulation of late virus proteins were reduced in NS1-81 mutant-infected cells at the permissive temperature and were essentially abolished for both viruses at the restrictive temperature, while synthesis and accumulation of nucleoprotein (NP) were unaffected. Probably as a consequence, the nucleocytoplasmic export of virus NP was strongly inhibited at the restrictive temperature. These results indicate that the NS1 protein is essential for nuclear and cytoplasmic steps during the virus cycle.


Journal of Virology | 2003

Threonine 157 of Influenza Virus PA Polymerase Subunit Modulates RNA Replication in Infectious Viruses

Maite Huarte; Ana Falcón; Yuri Nakaya; Juan Ortín; Adolfo García-Sastre; Amelia Nieto

ABSTRACT Previous results have shown a correlation between the decrease in protease activity of several influenza A virus PA protein mutants and the capacity to replicate of the corresponding mutant ribonucleoproteins (RNPs) reconstituted in vivo. In this work we studied the phenotype of mutant viruses containing these mutations. Viruses with a T162A mutation, which showed a very moderate decrease both in protease and replication activities of reconstituted RNPs, showed a wild-type phenotype. Viruses with a T157A mutation, which presented a severe decrease in protease activity and replication of RNPs, showed a complex phenotype: (i) transport to the nucleus of PAT157A protein was delayed, (ii) virus multiplication was reduced at both low and high multiplicities, (iii) transcriptive synthesis was unaltered while replicative synthesis, especially cRNA, was diminished, and (iv) viral pathogenesis in mice was reduced, as measured by loss of body weight and virus titers in lungs. Finally, recombinant viruses with a T157E mutation in PA protein, which resulted in a drastic reduction of protease and replication activities of RNPs, were not viable. These results indicate that residue T157 in PA protein is important for the capacity of viral polymerase to synthesize cRNA.


Archives of Virology | 2011

Detection of alpha and betacoronaviruses in multiple Iberian bat species

Ana Falcón; Sonia Vázquez-Morón; Inmaculada Casas; Carolina Aznar; Guillermo Ruiz; Francisco Pozo; Pilar Pérez-Breña; Javier Juste; Carlos Ibáñez; Inazio Garin; Joxerra Aihartza; Juan Emilio Echevarría

Bat coronaviruses (CoV) are putative precursors of the severe acute respiratory syndrome (SARS) CoV and other CoV that crossed the species barrier from zoonotic reservoirs into the human population. To determine the presence and distribution of CoV in Iberian bats, 576 individuals of 26 different bat species were captured in 13 locations in Spain. We report for the first time the presence of 14 coronaviruses in 9 Iberian bat species. Phylogenetic analysis of a conserved CoV genome region (RdRp gene) shows a wide diversity and distribution of alpha and betacoronavirus in Spain. Interestingly, although some of these viruses are related to other European BatCoV, or to Asian CoV, some of the viruses found in Spain cluster in new groups of α and β CoV.


Journal of Virology | 2005

Genetic Analysis of Influenza Virus NS1 Gene: a Temperature-Sensitive Mutant Shows Defective Formation of Virus Particles

Urtzi Garaigorta; Ana Falcón; Juan Ortín

ABSTRACT To perform a genetic analysis of the influenza A virus NS1 gene, a library of NS1 mutants was generated by PCR-mediated mutagenesis. A collection of mutant ribonucleic proteins containing the nonstructural genes was generated from the library that were rescued for an infectious virus mutant library by a novel RNP competition virus rescue procedure. Several temperature-sensitive (ts) mutant viruses were obtained by screening of the mutant library, and the sequences of their NS1 genes were determined. Most of the mutations identified led to amino acid exchanges and concentrated in the N-terminal region of the protein, but some of them occurred in the C-terminal region. Mutant 11C contained three mutations that led to amino acid exchanges, V18A, R44K, and S195P, all of which were required for the ts phenotype, and was characterized further. Several steps in the infection were slightly altered: (i) M1, M2, NS1, and neuraminidase (NA) accumulations were reduced and (ii) NS1 protein was retained in the nucleus in a temperature-independent manner, but these modifications could not justify the strong virus titer reduction at restrictive temperature. The most dramatic phenotype was the almost complete absence of virus particles in the culture medium, in spite of normal accumulation and nucleocytoplasmic export of virus RNPs. The function affected in the 11C mutant was required late in the infection, as documented by shift-up and shift-down experiments. The defect in virion production was not due to reduced NA expression, as virus yield could not be rescued by exogenous neuraminidase treatment. All together, the analysis of 11C mutant phenotype may indicate a role for NS1 protein in a late event in virus morphogenesis.


Journal of Virology | 2003

Mutations in the N-Terminal Region of Influenza Virus PB2 Protein Affect Virus RNA Replication but Not Transcription

Pablo Gastaminza; Beatriz Perales; Ana Falcón; Juan Ortín

ABSTRACT PB2 mutants of influenza virus were prepared by altering conserved positions in the N-terminal region of the protein that aligned with the amino acids of the eIF4E protein, involved in cap recognition. These mutant genes were used to reconstitute in vivo viral ribonucleoproteins (RNPs) whose biological activity was determined by (i) assay of viral RNA, cRNA, and mRNA accumulation in vivo, (ii) cap-dependent transcription in vitro, and (iii) cap snatching with purified recombinant RNPs. The results indicated that the W49A, F130A, and R142A mutations of PB2 reduced or abolished the capacity of mutant RNPs to synthesize RNA in vivo but did not substantially alter their ability to transcribe or carry out cap snatching in vitro. Some of the mutations (F130Y, R142A, and R142K) were rescued into infectious virus. While the F130Y mutant virus replicated faster than the wild type, mutant viruses R142A and R142K showed a delayed accumulation of cRNA and viral RNA during the infection cycle but normal kinetics of primary transcription, as determined by the accumulation of viral mRNA in cells infected in the presence of cycloheximide. These results indicate that the N-terminal region of PB2 plays a role in viral RNA replication.


Journal of Virology | 2009

Severe Acute Respiratory Syndrome Coronavirus Protein 6 Is Required for Optimal Replication

Jincun Zhao; Ana Falcón; Haixia Zhou; Jason Netland; Luis Enjuanes; Pilar Pérez Breña; Stanley Perlman

ABSTRACT Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes several accessory proteins of unknown function. One of these proteins, protein 6 (p6), which is encoded by ORF6, enhances virus replication when introduced into a heterologous murine coronavirus (mouse hepatitis virus [MHV]) but is not essential for optimal SARS-CoV replication after infection at a relatively high multiplicity of infection (MOI). Here, we reconcile these apparently conflicting results by showing that p6 enhances SARS-CoV replication to nearly the same extent as when expressed in the context of MHV if cells are infected at a low MOI and accelerates disease in mice transgenic for the human SARS-CoV receptor.


Journal of General Virology | 2015

CCR5 deficiency predisposes to fatal outcome in influenza virus infection

Ana Falcón; María Teresa Cuevas; Ariel Rodriguez-Frandsen; N. Reyes; Francisco Pozo; S. Moreno; Juan Ledesma; J. Martínez-Alarcón; Amelia Nieto; Inmaculada Casas

Influenza epidemics affect all age groups, although children, the elderly and those with underlying medical conditions are the most severely affected. Whereas co-morbidities are present in 50% of fatal cases, 25-50% of deaths are in apparently healthy individuals. This suggests underlying genetic determinants that govern infection severity. Although some viral factors that contribute to influenza disease are known, the role of host genetic factors remains undetermined. Data for small cohorts of influenza-infected patients are contradictory regarding the potential role of chemokine receptor 5 deficiency (CCR5-Δ32 mutation, a 32 bp deletion in the CCR5 gene) in the outcome of influenza virus infection. We tested 171 respiratory samples from influenza patients (2009 pandemic) for CCR5-Δ32 and evaluated its correlation with patient mortality. CCR5-Δ32 patients (17.4%) showed a higher mortality rate than WT individuals (4.7%; P = 0.021), which indicates that CCR5-Δ32 patients are at higher risk than the normal population of a fatal outcome in influenza infection.


Mbio | 2016

Chemical Genomics Identifies the PERK-Mediated Unfolded Protein Stress Response as a Cellular Target for Influenza Virus Inhibition

Sara Landeras-Bueno; Yolanda Fernández; Ana Falcón; Juan Carlos Oliveros; Juan Ortín

ABSTRACT Influenza A viruses generate annual epidemics and occasional pandemics of respiratory disease with important consequences for human health and the economy. Therefore, a large effort has been devoted to the development of new anti-influenza virus drugs directed to viral targets, as well as to the identification of cellular targets amenable to anti-influenza virus therapy. Here we have addressed the identification of such potential cellular targets by screening collections of drugs approved for human use. We reasoned that screening with a green fluorescent protein-based recombinant replicon system would identify cellular targets involved in virus transcription/replication and/or gene expression and hence address an early stage of virus infection. By using such a strategy, we identified Montelukast (MK) as an inhibitor of virus multiplication. MK inhibited virus gene expression but did not alter viral RNA synthesis in vitro or viral RNA accumulation in vivo. The low selectivity index of MK prevented its use as an antiviral, but it was sufficient to identify a new cellular pathway suitable for anti-influenza virus intervention. By deep sequencing of RNA isolated from mock- and virus-infected human cells, treated with MK or left untreated, we showed that it stimulates the PERK-mediated unfolded protein stress response. The phosphorylation of PERK was partly inhibited in virus-infected cells but stimulated in MK-treated cells. Accordingly, pharmacological inhibition of PERK phosphorylation led to increased viral gene expression, while inhibition of PERK phosphatase reduced viral protein synthesis. These results suggest the PERK-mediated unfolded protein response as a potential cellular target to modulate influenza virus infection. IMPORTANCE Influenza A viruses are responsible for annual epidemics and occasional pandemics with important consequences for human health and the economy. The unfolded protein response is a defense mechanism fired by cells when the demand of protein synthesis and folding is excessive, for instance, during an acute virus infection. In this report, we show that influenza virus downregulates the unfolded protein response mediated by the PERK sensor, while Montelukast, a drug used to treat asthma in humans, specifically stimulated this response and downregulated viral protein synthesis and multiplication. Accordingly, we show that PERK phosphorylation was reduced in virus-infected cells and increased in cells treated with Montelukast. Hence, our studies suggest that modulation of the PERK-mediated unfolded protein response is a target for influenza virus inhibition. Influenza A viruses are responsible for annual epidemics and occasional pandemics with important consequences for human health and the economy. The unfolded protein response is a defense mechanism fired by cells when the demand of protein synthesis and folding is excessive, for instance, during an acute virus infection. In this report, we show that influenza virus downregulates the unfolded protein response mediated by the PERK sensor, while Montelukast, a drug used to treat asthma in humans, specifically stimulated this response and downregulated viral protein synthesis and multiplication. Accordingly, we show that PERK phosphorylation was reduced in virus-infected cells and increased in cells treated with Montelukast. Hence, our studies suggest that modulation of the PERK-mediated unfolded protein response is a target for influenza virus inhibition.


Nucleic Acids Research | 1999

Interaction of influenza virus NS1 protein and the human homologue of Staufen in vivo and in vitro

Ana Falcón; Puri Fortes; Rosa María Marión; Ana Beloso; Juan Ortín

Collaboration


Dive into the Ana Falcón's collaboration.

Top Co-Authors

Avatar

Juan Ortín

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Amelia Nieto

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Inmaculada Casas

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Inazio Garin

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Javier Juste

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Joxerra Aihartza

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Rosa María Marión

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Francisco Pozo

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar

Guillermo Ruiz

Instituto de Salud Carlos III

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge