Ana Fernández-Ocaña
University of Jaén
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana Fernández-Ocaña.
FEBS Letters | 2007
Raquel Valderrama; Francisco J. Corpas; Alfonso Carreras; Ana Fernández-Ocaña; Mounira Chaki; Francisco Luque; María V. Gómez-Rodríguez; Pilar Colmenero-Varea; Luis A. del Río; Juan B. Barroso
Nitrosative stress has become a usual term in the physiology of nitric oxide in mammalian systems. However, in plants there is much less information on this type of stress. Using olive leaves as experimental model, the effect of salinity on the potential induction of nitrosative stress was studied. The enzymatic l‐arginine‐dependent production of nitric oxide (NOS activity) was measured by ozone chemiluminiscence. The specific activity of NOS in olive leaves was 0.280 nmol NO mg−1 protein min−1, and was dependent on l‐arginine, NADPH and calcium. Salt stress (200 mM NaCl) caused an increase of the l‐arginine‐dependent production of nitric oxide (NO), total S‐nitrosothiols (RSNO) and number of proteins that underwent tyrosine nitration. Confocal laser scanning microscopy analysis using either specific fluorescent probes for NO and RSNO or antibodies to S‐nitrosoglutathione and 3‐nitrotyrosine, showed also a general increase of these reactive nitrogen species (RNS) mainly in the vascular tissue. Taken together, these findings show that in olive leaves salinity induces nitrosative stress, and vascular tissues could play an important role in the redistribution of NO‐derived molecules during nitrosative stress.
Plant and Cell Physiology | 2008
Francisco J. Corpas; Mounira Chaki; Ana Fernández-Ocaña; Raquel Valderrama; José M. Palma; Alfonso Carreras; Juan C. Begara-Morales; Morad Airaki; Luis A. del Río; Juan B. Barroso
Nitric oxide (*NO) is a key signaling molecule in different physiological processes of animals and plants. However, little is known about the metabolism of endogenous *NO and other reactive nitrogen species (RNS) in plants under abiotic stress conditions. Using pea plants exposed to six different abiotic stress conditions (high light intensity, low and high temperature, continuous light, continuous dark and mechanical wounding), several key components of the metabolism of RNS including the content of *NO, S-nitrosothiols (RSNOs) and nitrite plus nitrate, the enzyme activities of l-arginine-dependent nitric oxide synthase (NOS) and S-nitrosogluthathione reductase (GSNOR), and the profile of protein tyrosine nitration (NO(2)-Tyr) were analyzed in leaves. Low temperature was the stress that produced the highest increase of NOS and GSNOR activities, and this was accompanied by an increase in the content of total *NO and S-nitrosothiols, and an intensification of the immunoreactivity with an antibody against NO(2)-Tyr. Mechanical wounding, high temperature and light also had a clear activating effect on the different indicators of RNS metabolism in pea plants. However, the total content of nitrite and nitrate in leaves was not affected by any of these stresses. Considering that protein tyrosine nitration is a potential marker of nitrosative stress, the results obtained suggest that low and high temperature, continuous light and high light intensity are abiotic stress conditions that can induce nitrosative stress in pea plants.
Plant and Cell Physiology | 2009
Mounira Chaki; Ana Fernández-Ocaña; Raquel Valderrama; Alfonso Carreras; Francisco J. Esteban; Francisco Luque; María V. Gómez-Rodríguez; Juan C. Begara-Morales; Francisco J. Corpas; Juan B. Barroso
Nitric oxide (.NO) has been shown to participate in plant response against pathogen infection; however, less is known of the participation of other NO-derived molecules designated as reactive nitrogen species (RNS). Using two sunflower (Helianthus annuus L.) cultivars with different sensitivity to infection by the pathogen Plasmopara halstedii, we studied key components involved in RNS and ROS metabolism. We analyzed the superoxide radical production, hydrogen peroxide content, l-arginine-dependent nitric oxide synthase (NOS) and S-nitrosoglutathione reductase (GSNOR) activities. Furthermore, we examined the location and contents of .NO, S-nitrosothiols (RSNOs), S-nitrosoglutathione (GSNO) and protein 3-nitrotyrosine (NO(2)-Tyr) by confocal laser scanning microscopy (CLSM) and biochemical analyses. In the susceptible cultivar, the pathogen induces an increase in proteins that undergo tyrosine nitration accompanied by an augmentation in RSNOs. This rise of RSNOs seems to be independent of the enzymatic generation of .NO because the l-arginine-dependent NOS activity is reduced after infection. These results suggest that pathogens induce nitrosative stress in susceptible cultivars. In contrast, in the resistant cultivar, no increase of RSNOs or tyrosine nitration of proteins was observed, implying an absence of nitrosative stress. Therefore, it is proposed that the increase of tyrosine nitration of proteins can be considered a general biological marker of nitrosative stress in plants under biotic conditions.
Journal of Experimental Botany | 2011
Mounira Chaki; Raquel Valderrama; Ana Fernández-Ocaña; Alfonso Carreras; María V. Gómez-Rodríguez; José Rafael Pedrajas; Juan C. Begara-Morales; Beatriz Sánchez-Calvo; Francisco Luque; Marina Leterrier; Francisco J. Corpas; Juan B. Barroso
Nitric oxide (NO) and related molecules such as peroxynitrite, S-nitrosoglutathione (GSNO), and nitrotyrosine, among others, are involved in physiological processes as well in the mechanisms of response to stress conditions. In sunflower seedlings exposed to five different adverse environmental conditions (low temperature, mechanical wounding, high light intensity, continuous light, and continuous darkness), key components of the metabolism of reactive nitrogen species (RNS) and reactive oxygen species (ROS), including the enzyme activities L-arginine-dependent nitric oxide synthase (NOS), S-nitrosogluthathione reductase (GSNOR), nitrate reductase (NR), catalase, and superoxide dismutase, the content of lipid hydroperoxide, hydrogen peroxide, S-nitrosothiols (SNOs), the cellular level of NO, GSNO, and GSNOR, and protein tyrosine nitration [nitrotyrosine (NO2-Tyr)] were analysed. Among the stress conditions studied, mechanical wounding was the only one that caused a down-regulation of NOS and GSNOR activities, which in turn provoked an accumulation of SNOs. The analyses of the cellular content of NO, GSNO, GSNOR, and NO2-Tyr by confocal laser scanning microscopy confirmed these biochemical data. Therefore, it is proposed that mechanical wounding triggers the accumulation of SNOs, specifically GSNO, due to a down-regulation of GSNOR activity, while NO2-Tyr increases. Consequently a process of nitrosative stress is induced in sunflower seedlings and SNOs constitute a new wound signal in plants.
Plant Cell and Environment | 2011
Mounira Chaki; Raquel Valderrama; Ana Fernández-Ocaña; Alfonso Carreras; María V. Gómez-Rodríguez; Javier López-Jaramillo; Juan C. Begara-Morales; Beatriz Sánchez-Calvo; Francisco Luque; Marina Leterrier; Francisco J. Corpas; Juan B. Barroso
High temperature (HT) is considered a major abiotic stress that negatively affects both vegetative and reproductive growth. Whereas the metabolism of reactive oxygen species (ROS) is well established under HT, less is known about the metabolism of reactive nitrogen species (RNS). In sunflower (Helianthus annuus L.) seedlings exposed to HT, NO content as well as S-nitrosoglutathione reductase (GSNOR) activity and expression were down-regulated with the simultaneous accumulation of total S-nitrosothiols (SNOs) including S-nitrosoglutathione (GSNO). However, the content of tyrosine nitration (NO(2) -Tyr) studied by high-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS) and by confocal laser scanning microscope was induced. Nitroproteome analysis under HT showed that this stress induced the protein expression of 13 tyrosine-nitrated proteins. Among the induced proteins, ferredoxin-NADP reductase (FNR) was selected to evaluate the effect of nitration on its activity after heat stress and in vitro conditions using 3-morpholinosydnonimine (SIN-1) (peroxynitrite donor) as the nitrating agent, the FNR activity being inhibited. Taken together, these results suggest that HT augments SNOs, which appear to mediate protein tyrosine nitration, inhibiting FNR, which is involved in the photosynthesis process.
Journal of Plant Physiology | 2011
Ana Fernández-Ocaña; Mounira Chaki; Francisco Luque; María V. Gómez-Rodríguez; Alfonso Carreras; Raquel Valderrama; Juan C. Begara-Morales; Luis E. Hernández; Francisco J. Corpas; Juan B. Barroso
Superoxide dismutases (SODs) are a family of metalloenzymes that catalyse the disproportionation of superoxide radicals into hydrogen peroxide and oxygen. In sunflower (Helianthus annuus L.) seedlings, two new Mn-SOD isozymes, designated as I and II, were identified. However, no evidence for a Fe-SOD was found. Both Mn-SOD I and Mn-SOD II have a cleaved sequence of 14 residues that target the mitochondrion with a probability of 81% and 95%, respectively. The gene expression of these new mitochondrial Mn-SODs as well as the previously reported cytosolic and chloroplastic CuZnSODs was analyzed by real-time quantitative reverse transcription-PCR. This was done in the main organs (roots, hypocotyls, and cotyledons) of sunflower seedlings and also under biotic (infection by the pathogen Plasmopara halstedii) and abiotic stress conditions, including high and low temperature and mechanical wounding. Both CuZn-SODs had a gene expression of 1000-fold higher than that of mitochondrial Mn-SODs. And the expression of the Mn-SOD I was approximately 12-fold higher than that of Mn-SOD II. The Mn-SOD I showed a significant modulation in response to the assayed biotic and abiotic stresses even when it had no apparent oxidative stress, such as low temperature. Thus, it is proposed that the mitochondrial Mn-SOD I gene could act as an early sensor of adverse conditions to prevent potential oxidative damage.
Tree Genetics & Genomes | 2010
Ana Fernández-Ocaña; Mari Carmen García-López; Jaime Jiménez-Ruiz; Luisa Saniger; David Macías; Francisco Navarro; Ricardo Oya; Angjelina Belaj; Raúl de la Rosa; Francisco J. Corpas; Juan B. Barroso; Francisco Luque
The juvenile-to-adult transition is a complex and poorly understood process in plant development required to reach reproductive competence. For woody plants, knowledge of this transition is even scantier and no genes have been definitively identified as involved in this transition. To search for genes involved in the juvenile-to-adult transition in olive, we constructed juvenile and adult subtractive cDNA gene libraries and identified genes that were differentially expressed in the juvenile and adult phases. In the analysis of theses libraries, we found 13 differentially expressed genes. One of these genes designated as juvenile to adult transition (JAT) was of special interest because it was highly expressed at the mRNA level in the early developmental phases but repressed in the adult phase. The analysis of mutant trees altered in the juvenile-to-adult transition, as well as a segregating progeny of 31 trees from a “Picual” x “Jabaluna” cross, support the contention that its activity might be required for a non-delayed transition. The study of an Arabidopsis thaliana JAT mutant strain confirmed this hypothesis as it showed a delayed flowering phenotype. JAT is expressed in different parts of the plant, showing an unexpectedly high level of mRNA in the roots. However, the JAT expression level is not determined by the distance to the roots, but rather depends on the developmental stage of the branch meristems. JAT is a widely represented gene in plants that appears to be involved in the control of the juvenile-to-adult transition in olive.
Frontiers in Plant Science | 2015
Capilla Mata-Pérez; Beatriz Sánchez-Calvo; Juan C. Begara-Morales; Francisco Luque; Jaime Jiménez-Ruiz; María N. Padilla; Jesús Fierro-Risco; Raquel Valderrama; Ana Fernández-Ocaña; Francisco J. Corpas; Juan B. Barroso
Linolenic acid (Ln) released from chloroplast membrane galactolipids is a precursor of the phytohormone jasmonic acid (JA). The involvement of this hormone in different plant biological processes, such as responses to biotic stress conditions, has been extensively studied. However, the role of Ln in the regulation of gene expression during abiotic stress situations mediated by cellular redox changes and/or by oxidative stress processes remains poorly understood. An RNA-seq approach has increased our knowledge of the interplay among Ln, oxidative stress and ROS signaling that mediates abiotic stress conditions. Transcriptome analysis with the aid of RNA-seq in the absence of oxidative stress revealed that the incubation of Arabidopsis thaliana cell suspension cultures (ACSC) with Ln resulted in the modulation of 7525 genes, of which 3034 genes had a 2-fold-change, being 533 up- and 2501 down-regulated genes, respectively. Thus, RNA-seq data analysis showed that an important set of these genes were associated with the jasmonic acid biosynthetic pathway including lypoxygenases (LOXs) and Allene oxide cyclases (AOCs). In addition, several transcription factor families involved in the response to biotic stress conditions (pathogen attacks or herbivore feeding), such as WRKY, JAZ, MYC, and LRR were also modified in response to Ln. However, this study also shows that Ln has the capacity to modulate the expression of genes involved in the response to abiotic stress conditions, particularly those mediated by ROS signaling. In this regard, we were able to identify new targets such as galactinol synthase 1 (GOLS1), methionine sulfoxide reductase (MSR) and alkenal reductase in ACSC. It is therefore possible to suggest that, in the absence of any oxidative stress, Ln is capable of modulating new sets of genes involved in the signaling mechanism mediated by additional abiotic stresses (salinity, UV and high light intensity) and especially in stresses mediated by ROS.
Journal of Essential Oil Research | 2006
Ana Fernández-Ocaña; Carlos Fernández-Lôpez; † Ana M. Camacho-Simarro; Arturo Velasco-Negueruela; María José Pérez-Alonso; Jesús Palá-Paúl; M. C. García-Vallejo; Joaquín Altarejos
Abstract The yield and composition of essential oils from leaves, stems, umbel rays and also from whole aerial parts of Bupleurum gibraltarium Lam. (Apiaceae) were determined during the pre-flowering, full flowering, late flowering, and fruiting vegetative periods. A fruit sample was also studied for comparative purposes. Leaves (0.8–1.8% yield) and stems (0.3–0.7%) reached their maximum oil content during the late flowering period, whereas umbel rays (2.2–3.7%) reached it in full flowering. Oil samples were analyzed by capillary GC and GC/MS: components which were found in amounts greater than 2% were selected to carry out a seasonal study. In the leaf oils, sabinene (12.0–33.9%) and limonene (7.8–23.4%) were the main components, the sabinene level being minimum in full flowering and maximum in fruiting. In stem oils, sabinene (4.7–21.6%) and 2,3,4-trimethylbenzaldehyde (9.3–13.6%) were the main components, the sabinene level being minimum in pre-flowering and maximum in full flowering. In umbel ray oils, sabinene (20.7–43.1%) was the first component in all the phenological periods, followed by α-pinene (7.3–28.2%). Both monoterpenes increased their levels in late flowering and reached minimum amounts in fruiting.
Annals of Botany | 2018
Luisa M. Martínez; Ana Fernández-Ocaña; Pedro J. Rey; Teresa Salido; Francisco Amil-Ruiz; Antonio J. Manzaneda
Background and Aims Some polyploid species show enhanced physiological tolerance to drought compared with their progenitors. However, very few studies have examined the consistency of physiological drought response between genetically differentiated natural polyploid populations, which is key to evaluation of the importance of adaptive evolution after polyploidization in those systems where drought exerts a selective pressure. Methods A comparative functional approach was used to investigate differentiation of drought-tolerance-related traits in the Brachypodium species complex, a model system for grass polyploid adaptive speciation and functional genomics that comprises three closely related annual species: the two diploid parents, B. distachyon and B. stacei, and the allotetraploid derived from them, B. hybridum. Differentiation of drought-tolerance-related traits between ten genetically distinct B. hybridum populations and its ecological correlates was further analysed. Key Results The functional drought response is overall well differentiated between Brachypodium species. Brachypodium hybridum allotetraploids showed a transgressive expression pattern in leaf phytohormone content in response to drought. In contrast, other B. hybridum physiological traits correlated to B. stacei ones. Particularly, proline and water content were the traits that best discriminated these species from B. distachyon under drought. Conclusions After polyploid formation and/or colonization, B. hybridum populations have adaptively diverged physiologically and genetically in response to variations in aridity.