Ana Giménez-Capitán
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana Giménez-Capitán.
Clinical Cancer Research | 2014
Carlota Costa; Miguel Angel Molina; Ana Drozdowskyj; Ana Giménez-Capitán; Jordi Bertran-Alamillo; Niki Karachaliou; Radj Gervais; Bartomeu Massuti; Jia Wei; Teresa Moran; Margarita Majem; Enriqueta Felip; Enric Carcereny; Rosario García-Campelo; Santiago Viteri; Miquel Taron; Mayumi Ono; Petros Giannikopoulos; Trever G. Bivona; Rafael Rosell
Purpose: Concomitant genetic alterations could account for transient clinical responses to tyrosine kinase inhibitors of the EGF receptor (EGFR) in patients harboring activating EGFR mutations. Experimental Design: We have evaluated the impact of pretreatment somatic EGFR T790M mutations, TP53 mutations, and Bcl-2 interacting mediator of cell death (BCL2L11, also known as BIM) mRNA expression in 95 patients with EGFR-mutant non–small-cell lung cancer (NSCLC) included in the EURTAC trial (trial registration: NCT00446225). Results: T790M mutations were detected in 65.26% of patients using our highly sensitive method based on laser microdissection and peptide-nucleic acid-clamping PCR, which can detect the mutation at an allelic dilution of 1 in 5,000. Progression-free survival (PFS) to erlotinib was 9.7 months for those with T790M mutations and 15.8 months for those without, whereas among patients receiving chemotherapy, it was 6 and 5.1 months, respectively (P < 0.0001). PFS to erlotinib was 12.9 months for those with high and 7.2 months for those with low/intermediate BCL2L11 expression levels, whereas among chemotherapy-treated patients, it was 5.8 and 5.5 months, respectively (P = 0.0003). Overall survival was 28.6 months for patients with high BCL2L11 expression and 22.1 months for those with low/intermediate BCL2L11 expression (P = 0.0364). Multivariate analyses showed that erlotinib was a marker of longer PFS (HR = 0.35; P = 0.0003), whereas high BCL2L11 expression was a marker of longer PFS (HR = 0.49; P = 0.0122) and overall survival (HR = 0.53; P = 0.0323). Conclusions: Low-level pretreatment T790M mutations can frequently be detected and can be used for customizing treatment with T790M-specific inhibitors. BCL2L11 mRNA expression is a biomarker of survival in EGFR-mutant NSCLC and can potentially be used for synthetic lethality therapies. Clin Cancer Res; 20(7); 2001–10. ©2014 AACR.
Oncotarget | 2016
R. Jonas A. Nilsson; Niki Karachaliou; Jordi Berenguer; Ana Giménez-Capitán; Pepijn Schellen; Cristina Teixidó; Jihane Tannous; Justine L. Kuiper; Esther Drees; Magda Grabowska; Marte van Keulen; Daniëlle A.M. Heideman; Anne-Marie C. Dingemans; Santiago Viteri; Bakhos A. Tannous; Ana Drozdowskyj; Rafael Rosell; Egbert F. Smit; Thomas Wurdinger
Purpose: Non-small-cell lung cancers harboring EML4-ALK rearrangements are sensitive to crizotinib. However, despite initial response, most patients will eventually relapse, and monitoring EML4-ALK rearrangements over the course of treatment may help identify these patients. However, challenges associated with serial tumor biopsies have highlighted the need for blood-based assays for the monitoring of biomarkers. Platelets can sequester RNA released by tumor cells and are thus an attractive source for the non-invasive assessment of biomarkers. Methods: EML4-ALK rearrangements were analyzed by RT-PCR in platelets and plasma isolated from blood obtained from 77 patients with non-small-cell lung cancer, 38 of whom had EML4-ALK-rearranged tumors. In a subset of 29 patients with EML4-ALK-rearranged tumors who were treated with crizotinib, EML4-ALK rearrangements in platelets were correlated with progression-free and overall survival. Results: RT-PCR demonstrated 65% sensitivity and 100% specificity for the detection of EML4-ALK rearrangements in platelets. In the subset of 29 patients treated with crizotinib, progression-free survival was 3.7 months for patients with EML4-ALK+ platelets and 16 months for those with EML4-ALK− platelets (hazard ratio, 3.5; P = 0.02). Monitoring of EML4-ALK rearrangements in the platelets of one patient over a period of 30 months revealed crizotinib resistance two months prior to radiographic disease progression. Conclusions: Platelets are a valuable source for the non-invasive detection of EML4-ALK rearrangements and may prove useful for predicting and monitoring outcome to crizotinib, thereby improving clinical decisions based on radiographic imaging alone.
PLOS ONE | 2010
Mireia Margelí; Beatriz Cirauqui; Eva Castellà; Gustavo Tapia; Carlota Costa; Ana Giménez-Capitán; Agustí Barnadas; Maria Sanchez Ronco; Susana Benlloch; Miquel Taron; Rafael Rosell
Background A fraction of sporadic breast cancers has low BRCA1 expression. BRCA1 mutation carriers are more likely to achieve a pathological complete response with DNA-damage-based chemotherapy compared to non-mutation carriers. Furthermore, sporadic ovarian cancer patients with low levels of BRCA1 mRNA have longer survival following platinum-based chemotherapy than patients with high levels of BRCA1 mRNA. Methodology/Principal Findings Tumor biopsies were obtained from 86 breast cancer patients who were candidates for neoadjuvant chemotherapy, treated with four cycles of neoadjuvant fluorouracil, epirubicin and cyclophosphamide. Estrogen receptor (ER), progesterone receptor (PR), HER2, cytokeratin 5/6 and vimentin were examined by tissue microarray. HER2 were also assessed by chromogenic in situ hybridization, and BRCA1 mRNA was analyzed in a subset of 41 patients for whom sufficient tumor tissue was available by real-time quantitative PCR. Median time to progression was 42 months and overall survival was 55 months. In the multivariate analysis for time to progression and overall survival for 41 patients in whom BRCA1 could be assessed, low levels of BRCA1 mRNA, positive PR and negative lymph node involvement predicted a significantly lower risk of relapse, low levels of BRCA1 mRNA and positive PR were the only variables associated with significantly longer survival. Conclusions/Significance We provide evidence for a major role for BRCA1 mRNA expression as a marker of time to progression and overall survival in sporadic breast cancers treated with anthracycline-based chemotherapy. These findings can be useful for customizing chemotherapy.
Journal of the National Cancer Institute | 2011
Jia Wei; Carlota Costa; Yitao Ding; Zhengyun Zou; Lixia Yu; Jose Javier Sanchez; Xiaoping Qian; Hong Chen; Ana Giménez-Capitán; Fanqing Meng; Teresa Moran; Susana Benlloch; Miquel Taron; Rafael Rosell; Baorui Liu
Breast cancer susceptibility gene 1 (BRCA1) has a central role in chemotherapy-induced DNA damage response. The protein inhibitor of activated STAT (PIAS) family of proteins, PIAS1 and PIAS4, are also necessary for adequate DNA damage repair. To further understand the role of BRCA1 in DNA repair, we examined the mRNA expression of these genes in 133 advanced (stage III-IV) gastric cancer patients using quantitative reverse transcription polymerase chain reaction. All P values were two-sided. The median overall survival was 12.5 months (95% confidence interval [CI] = 9.8 to 13.4 months). Among 59 patients receiving second-line docetaxel, the median overall survival was 25.8 months (95% CI = 9.2 to 42.4 months) for patients with high BRCA1 expression, 19.1 months (95% CI = 3.4 to 34.8 months) for those with intermediate expression, and 9.5 months (95% CI = 8.7 to 10.2 months) for those with low expression (P = .0062). The risk of mortality was higher in patients with low BRCA1 levels compared with high BRCA1 levels (hazard ratio of death = 2.49, 95% CI = 1.03 to 5.97, P = .037). Survival in patients receiving second-line docetaxel-based chemotherapy showed a similar trend with PIAS1 and PIAS4 mRNA expression levels, although the associations for PIAS4 were not statistically significant.
Translational lung cancer research | 2014
Cristina Teixidó; Niki Karachaliou; Vicente Peg; Ana Giménez-Capitán; Rafael Rosell
The echinoderm microtubule-associated protein-like 4 anaplastic lymphoma kinase (EML4-ALK) has emerged as the second most important driver oncogene in lung cancer and the first targetable fusion oncokinase to be identified in 4-6% of lung adenocarcinomas. Crizotinib, along with a diagnostic test-the Vysis ALK Break Apart fluorescence in situ hybridization (FISH) Probe Kit-is approved for the treatment of ALK positive advanced non-small cell lung cancer (NSCLC). However, the success of a targeted drug is critically dependent on a sensitive and specific screening assay to detect the molecular drug target. In our experience, reverse transcription polymerase chain reaction (RT-PCR)-based detection of EML4-ALK is a more sensitive and reliable approach compared to FISH and immunohistochemistry (IHC). Although ALK FISH is clinically validated, the assay can be technically challenging and other diagnostic modalities, including IHC and RT-PCR should be further explored.
Pharmacogenomics | 2012
Clara Mayo; Jordi Bertran-Alamillo; Miguel Angel Molina-Vila; Ana Giménez-Capitán; Carlota Costa; Rafael Rosell
Lung cancer is a lethal disease, and most cases have already disseminated at the time of diagnosis. Driver mutations in the EGFR tyrosine kinase domain (mainly deletions in exon 19 and L858R mutation in exon 21) have been identified in lung adenocarcinomas, mostly in never smokers, at frequencies of 20-60%. The EGFR tyrosine kinase inhibitors (TKIs) gefitinib or erlotinib attain a response rate of 70% and progression-free survival of 9-13 months, although there are subgroups of patients with long-lasting remissions. No significant correlation between EGFR overexpression and response to treatment has been found, while controversial results have been reported regarding EGFR gene amplification. The pretreatment presence of the T790M mutation, initially identified as an acquired resistance mutation to treatment with EGFR TKIs, has also been reported and may indicate a genetically distinct disease. Finally, other genetic factors, such as mRNA expression of BRCA1 and components of the NF-κB pathway, can modulate response to EGFR TKIs in EGFR-mutated patients.
Journal of Translational Medicine | 2011
Mariacarmela Santarpia; Ignacio Magri; Maria Sanchez-Ronco; Carlota Costa; Miguel Angel Molina-Vila; Ana Giménez-Capitán; Jordi Bertran-Alamillo; Clara Mayo; Susana Benlloch; Santiago Viteri; Amaya Gasco; Nuria Mederos; Enric Carcereny; Miquel Taron; Rafael Rosell
BackgroundMetastatic non-small-cell lung cancer (NSCLC) has a dismal prognosis. EGFR is overexpressed or mutated in a large proportion of cases. Downstream components of the EGFR pathway and crosstalk with the NF-κB pathway have not been examined at the clinical level. We explored the prognostic significance of the mRNA expression of nine genes in the EGFR and NF-κB pathways and of BRCA1 and RAP80 in patients in whom EGFR and K-ras gene status had previously been determined. In addition, NFKBIA and DUSP22 gene status was also determined.MethodsmRNA expression of the eleven genes was determined by QPCR in 60 metastatic NSCLC patients and in nine lung cancer cell lines. Exon 3 of NFKBIA and exon 6 of DUSP22 were analyzed by direct sequencing. Results were correlated with outcome to platinum-based chemotherapy in patients with wild-type EGFR and to erlotinib in those with EGFR mutations.ResultsBRCA1 mRNA expression was correlated with EZH2, AEG-1, Musashi-2, CYLD and TRAF6 expression. In patients with low levels of both BRCA1 and AEG-1, PFS was 13.02 months, compared to 5.4 months in those with high levels of both genes and 7.7 months for those with other combinations (P = 0.025). The multivariate analysis for PFS confirmed the prognostic role of high BRCA1/AEG-1 expression (HR, 3.1; P = 0.01). Neither NFKBIA nor DUSP22 mutations were found in any of the tumour samples or cell lines.ConclusionsThe present study provides a better understanding of the behaviour of metastatic NSCLC and identifies the combination of BRCA1 and AEG-1 expression as a potential prognostic model.
Translational lung cancer research | 2013
Carlota Costa; Ana Giménez-Capitán; Niki Karachaliou; Rafael Rosell
Up to now, the analysis of the mRNA expression in tumoral and non-tumoral has been conducted via RT-PCR. It is considered to be the gold standard for measuring the number of copies of specific cDNA targets. The application of RT-PCR has demonstrated that levels of RNA transcripts stratify patients and predict outcomes in a variety of diseases, providing the basis for several important clinical tests. However, the inherent variability in the quality of any quantitative PCR data makes it difficult to replicate and the analysis is time consuming in the laboratory for the analysis of one gene. Moreover, comparing expression levels across different experiments is often difficult and can require complicated normalization methods. Many techniques have been developed over the years but without good clinical applications. A new, simple and effective way to measure transcriptome composition and to discover new exons or genes is by the RNA-seq. Some advantages of this technique are high reproducibility, the large dynamic range, requirement of less sample RNA, and the ability to detect novel transcripts, alternative splicing, even in the absence of a sequenced genome. However, this RNA-Seq technique will not likely replace current RT-PCR methods, but will be complementary depending on the needs and the resources of the clinic and the laboratory as the results of the RNA-Seq will identify those genes that need to then be examined using RT-PCR methods. The application of the two complementary technologies in the routine analysis of cancer laboratories would be useful in characterizing patients and would assist oncologists in making clinical decisions, as it allows us to identify all molecular characteristics of the tumor.
PLOS ONE | 2014
Susana Benlloch; Maria Luisa Botero; Jordi Beltran-Alamillo; Clara Mayo; Ana Giménez-Capitán; Itziar de Aguirre; Cristina Queralt; Jose Luis Ramirez; Santiago Ramón y Cajal; Barbara Klughammer; Mariette Schlegel; Walter Bordogna; David Chen; Guili Zhang; Barbara Kovach; Felice Shieh; John F. Palma; Lin Wu; H. Jeffrey Lawrence; Miquel Taron
The EURTAC trial demonstrated that the tyrosine kinase inhibitor (TKI) erlotinib was superior to chemotherapy as first-line therapy for advanced non-small cell lung cancers (NSCLC) that harbor EGFR activating mutations in a predominantly Caucasian population. Based on EURTAC and several Asian trials, anti-EGFR TKIs are standard of care for EGFR mutation-positive NSCLC. We sought to validate a rapid multiplex EGFR mutation assay as a companion diagnostic assay to select patients for this therapy. Samples from the EURTAC trial were prospectively screened for EGFR mutations using a combination of laboratory-developed tests (LDTs), and tested retrospectively with the cobas EGFR mutation test (EGFR PCR test). The EGFR PCR test results were compared to the original LDT results and to Sanger sequencing, using a subset of specimens from patients screened for the trial. Residual tissue was available from 487 (47%) of the 1044 patients screened for the trial. The EGFR PCR test showed high concordance with LDT results with a 96.3% overall agreement. The clinical outcome of patients who were EGFR-mutation detected by the EGFR PCR test was very similar to the entire EURTAC cohort. The concordance between the EGFR PCR test and Sanger sequencing was 90.6%. In 78.9% of the discordant samples, the EGFR PCR test result was confirmed by a sensitive deep sequencing assay. This retrospective study demonstrates the clinical utility of the EGFR PCR test in the accurate selection of patients for anti-EGFR TKI therapy. The EGFR PCR test demonstrated improved performance relative to Sanger sequencing.
Translational lung cancer research | 2014
Niki Karachaliou; Ana Giménez-Capitán; Ana Drozdowskyj; Santiago Viteri; Teresa Moran; Enric Carcereny; Bartomeu Massuti; Alain Vergnenegre; Filippo De Marinis; Miguel Angel Molina; Cristina Teixidó; Rafael Rosell
BACKGROUND Activation of bypass signaling pathways, impairment of apoptosis and mutation of epidermal growth factor receptor (EGFR) to a drug-resistant state are well known mechanisms of resistance to single-agent erlotinib therapy in non-small-cell lung cancer (NSCLC) driven by EGFR mutations. Orphan receptor 1 (ROR1) knockdown inhibited the growth of NCI-H1975 cells (harboring EGFR L858R and T790M mutations). A pro-survival function for ROR1/MEK/ERK signaling in cooperation with AKT has been demonstrated. METHODS We have assessed ROR1 expression in 45 patients from the EURTAC trial (clinicaltrials.gov NCT00446225), 27 of whom harbored pretreatment concomitant EGFR T790M mutations, and correlated results with outcome. RESULTS Progression-free survival (PFS) was 11.8 months for erlotinib-treated patients with low/intermediate and 5.8 months for those with high ROR1 levels. PFS for chemotherapy-treated patients was 5.6 and 9 months, respectively (P=0.0165). A total of 15 erlotinib-treated patients harbored concomitant T790M mutations; for these patients, PFS was 10.8 months for those with low/intermediate compared to 2.7 months for those with high ROR1 levels. In contrast, among 12 chemotherapy-treated patients with concomitant T790M mutations, PFS was 5.8 months for those with low/intermediate, compared to 14.2 months for those with high ROR1 levels (P=0.0138). CONCLUSIONS ROR1 expression has a differential effect on outcome to erlotinib and chemotherapy in EGFR-mutant NSCLC patients. High ROR1 expression significantly limits PFS in erlotinib-treated patients with T790M mutations and ROR1-directed therapies can enhance the efficacy of treatment. In contrast, high ROR1 expression confers longer PFS to chemotherapy in the same group of patients. The role of chemotherapy and erlotinib in EGFR-mutant NSCLC patients with high ROR1 expression warrants further investigation.