Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana I. Calvo is active.

Publication


Featured researches published by Ana I. Calvo.


Journal of Geophysical Research | 2010

Radiative forcing of haze during a forest fire in Spain

Ana I. Calvo; Véronique Pont; Amaya Castro; Marc Mallet; Covadonga Palencia; Jean-Claude Roger; Philippe Dubuisson; Roberto Fraile

Intense fires occurred in northwestern Spain on 6 September 2000, filling a valley with smoke haze. Aerosol size distribution measurements were performed during 1 day with a thermal inversion, so the aging process of the smoke aerosol could be closely monitored. In 3.5 h, the fine aerosol increased up to 0.06 μm in the geometric median diameter of the fine mode. This aging process enhanced the scattering ability of aerosols. On the basis of several hypotheses on the data obtained, shortwave radiative forcing at surface level, at top level, and in the atmosphere was estimated: instantaneous surface forcing reached up to between −80.4 and −67.4 W/m2, top of the atmosphere (TOA) instantaneous forcing reached up to between −23.4 and +4.9 W/m2, and instantaneous atmosphere forcing reached up to between +44.2 and +85.3 W/m2. The study reveals not only the absorption of solar radiation in the atmosphere by smoke aerosols but also an aerosol-induced case study, where TOA cooling forcing shifts to warming for specific aerosol single scattering albedo. The daily mean heating rate of the smoke haze was estimated at 5.9 ± 0.6 K/d.


Science of The Total Environment | 2015

Indoor aerosol size distributions in a gymnasium

Amaya Castro; Ana I. Calvo; Célia Alves; Elisabeth Alonso-Blanco; Esther Coz; Liliana Marques; Teresa Nunes; José Manuel Fernández-Guisuraga; Roberto Fraile

In this study, an indoor/outdoor monitoring program was carried out in a gymnasium at the University of Leon, Spain. The main goal was a characterization of aerosol size distributions in a university gymnasium under different conditions and sports activities (with and without magnesia alba) and the study of the mass fraction deposited in each of the parts of the respiratory tract. The aerosol particles were measured in 31 discrete channels (size ranges) using a laser spectrometer probe. Aerosol size distributions were studied under different conditions: i) before sports activities, ii) activities without using magnesia alba, iii) activities using magnesia alba, iv) cleaning procedures, and v) outdoors. The aerosol refractive index and density indoors were estimated from the aerosol composition: 1.577-0.003i and 2.055 g cm(-3), respectively. Using the estimated density, the mass concentration was calculated, and the evolution of PM1, PM2.5 and PM10 for different activities was assessed. The quality of the air in the gymnasium was strongly influenced by the use of magnesia alba (MgCO3) and the number of gymnasts who were training. Due to the climbing chalk and the constant process of resuspension, average PM10 concentrations of over 440 μg m(-3) were reached. The maximum daily concentrations ranged from 500 to 900 μg m(-3). Particle size determines the place in the respiratory tract where the deposition occurs. For this reason, the inhalable, thoracic, tracheobronchial and respirable fractions were assessed for healthy adults and high risk people, according to international standards. The estimations show that, for healthy adults, up to 300 μg m(-3) can be retained by the trachea and bronchi, and 130 μg m(-3) may reach the alveolar region. The different physical activities and the attendance rates in the sports facility have a significant influence on the concentration and size distributions observed.


Frontiers in Environmental Science | 2014

Seasonal variability of aerosol concentration and size distribution in Cape Verde using a continuous aerosol optical spectrometer

Casimiro Pio; João Cardoso; Mário Cerqueira; Ana I. Calvo; Teresa Nunes; Célia Alves; Danilo Custódio; S. M. Almeida; Marina Almeida-Silva

One year of, almost continuous, measurements of aerosol optical properties and chemical composition were performed at the outskirts of Praia, Santiago Island, Cape Verde, within the framework of CV-DUST (Atmospheric aerosol in Cape Verde region: seasonal evaluation of composition, sources and transport) research project, during 2011. This article reports the aerosol number and mass concentration measurements using a GRIMM Optical Aerosol Spectrometer that provides number size discrimination into 31 size ranges from 0.25 to 32 µm. Time series of 5 min average PM10 concentrations revealed peak values higher than 1000 µg.m-3 during winter dust storm events originating over Northern Africa. The 24 hours average concentrations exceeded the World Health Organization (WHO) guidelines for PM2.5 and PM10 in 20% and 30% of the 2001 days, respectively. Annual average mass concentrations (±standard deviation) for PM1, PM2.5 and PM10 were 5±5, 19±21 and 48±64 µg.m-3, respectively. The annual PM2.5 and PM10 values were also above the limits prescribed by the WHO (10 and 20 µg.m-3, respectively). The aerosol mass size distribution revealed two main modes for particles smaller than 10 µm: a fine mode (0.7-0.8 µm), which possibly results of gas to particle conversion processes; and a coarse mode with maxima at 3-4 µm, which is associated with desert dust and sea salt sources. Within the coarse mode two sub-modes with maxima at 5-6 µm and 10-12 µm were frequently present.


Environmental Science and Pollution Research | 2016

Nitrogen oxides and ozone in Portugal: trends and ozone estimation in an urban and a rural site.

José Manuel Fernández-Guisuraga; Amaya Castro; Célia Alves; Ana I. Calvo; Elisabeth Alonso-Blanco; Carlos Blanco-Alegre; A. Rocha; Roberto Fraile

This study provides an analysis of the spatial distribution and trends of NO, NO2 and O3 concentrations in Portugal between 1995 and 2010. Furthermore, an estimation model for daily ozone concentrations was developed for an urban and a rural site. NO concentration showed a significant decreasing trend in most urban stations. A decreasing trend in NO2 is only observed in the stations with less influence from emissions of primary NO2. Several stations showed a significant upward trend in O3 as a result of the decrease in the NO/NO2 ratio. In the northern rural region, ozone showed a strong correlation with wind direction, highlighting the importance of long-range transport. In the urban site, most of the variance is explained by the NO2/NOX ratio. The results obtained by the ozone estimation model in the urban site fit 2013 observed data. In the rural site, the estimated ozone during extreme events agrees with observed concentration.


The Scientific World Journal | 2012

The Influence of Wildfires on Aerosol Size Distributions in Rural Areas

Elisabeth Alonso-Blanco; Ana I. Calvo; Roberto Fraile; Amaya Castro

The number of particles and their size distributions were measured in a rural area, during the summer, using a PCASP-X. The aim was to study the influence of wildfires on particle size distributions. The comparative studies carried out reveal an average increase of around ten times in the number of particles in the fine mode, especially in sizes between 0.10 and 0.14 μm, where the increase is of nearly 20 times. An analysis carried out at three different points in time—before, during, and after the passing of the smoke plume from the wildfires—shows that the mean geometric diameter of the fine mode in the measurements affected by the fire is smaller than the one obtained in the measurements carried out immediately before and after (0.14 μm) and presents average values of 0.11 μm.


The Scientific World Journal | 2013

Error in the Sampling Area of an Optical Disdrometer: Consequences in Computing Rain Variables

Roberto Fraile; Amaya Castro; María Fernández-Raga; Covadonga Palencia; Ana I. Calvo

The aim of this study is to improve the estimation of the characteristic uncertainties of optic disdrometers in an attempt to calculate the efficient sampling area according to the size of the drop and to study how this influences the computation of other parameters, taking into account that the real sampling area is always smaller than the nominal area. For large raindrops (a little over 6 mm), the effective sampling area may be half the area indicated by the manufacturer. The error committed in the sampling area is propagated to all the variables depending on this surface, such as the rain intensity and the reflectivity factor. Both variables tend to underestimate the real value if the sampling area is not corrected. For example, the rainfall intensity errors may be up to 50% for large drops, those slightly larger than 6 mm. The same occurs with reflectivity values, which may be up to twice the reflectivity calculated using the uncorrected constant sampling area. The Z-R relationships appear to have little dependence on the sampling area, because both variables depend on it the same way. These results were obtained by studying one particular rain event that occurred on April 16, 2006.


Science of The Total Environment | 2018

Impact of the wood combustion in an open fireplace on the air quality of a living room: Estimation of the respirable fraction

Amaya Castro; Ana I. Calvo; Carlos Blanco-Alegre; Fernanda Oduber; Célia Alves; Esther Coz; Fulvio Amato; Xavier Querol; Roberto Fraile

Presently, both in rural areas and in cities open fireplaces are still present and large quantities of wood are combusted every year. The present study aims to characterize aerosol size distribution, chemical composition and deposition in the human respiratory tract of particles emitted during the combustion of logs of oak in an open fireplace installed in the living room of a typical village house. CO2 and CO levels and aerosol size distribution have been continuously monitored and a PM10 sampler with two types of filters for chemical and microscopic analysis was also installed. The increment, between the operating periods and the indoor background, in the organic carbon and PM10 concentration due to the use of the fireplace is 15.7±0.6 (mean±standard deviation) and 58.5±6.2μgm-3, respectively. The two main polluting processes during the operation of the fireplace are the ignition with the subsequent refueling and the final cleaning of the residual ashes. In both phases mean values around 1800 particles cm-3 with CMD of 0.15μm were measured. However, while PM10 levels of 130±120μgm-3 were estimated for the ignition stage, values of 200±200μgm-3 were obtained during the final cleaning step. Assessment conducted according to ISO standard 7708:1995, demonstrated that a person who stays in a living room when an open fireplace is lit will inhale, on average, 217μgm-3 and 283μgm-3 during the ignition and the refueling stages, respectively. Subsequent refueling proved to be much less polluting. The ashes removal can also be very polluting and dangerous to health if there are hidden small incandescent embers among the ashes (estimated PM10 of 132μgm-3), reaching a CO2 level of 1940ppm and a dangerous level of CO of 132ppm.


Journal of Environmental Sciences-china | 2017

Hydrocarbons in particulate samples from wildfire events in central Portugal in summer 2010

Ana Vicente; Ana I. Calvo; Ana Patrícia Fernandes; Teresa Nunes; Cristina Monteiro; Casimiro Pio; Célia Alves

In summer 2010, twenty eight (14 PM2.5 samples plus 14 samples PM2.5-10) smoke samples were collected during wildfires that occurred in central Portugal. A portable high-volume sampler was used to perform the sampling, on quartz fibre filters of coarse (PM2.5-10) and fine (PM2.5) smoke samples. The carbonaceous content (elemental and organic carbon) of particulate matter was analysed by a thermal-optical technique. Subsequently, the particulate samples were solvent extracted and fractionated by vacuum flash chromatography into three different classes of organic compounds (aliphatics, polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds). The organic speciation was performed by gas chromatography-mass spectrometry (GC-MS). Emissions were dominated by the fine particles, which represented around 92% of the PM10. A clear predominance of carbonaceous constituents was observed, with organic to elemental carbon (OC/EC) ratios ranging between 1.69 and 245 in both size fractions. The isoprenoid ketone 6,10,14-trimethyl-2-pentadecanone, a tracer for secondary organic aerosol formation, was one of the dominant constituents in both fine and coarse particles. Retene was the most abundant compound in all samples. Good correlations were obtained between OC and both aliphatic and PAH compounds. Pyrogenic processes, thermal release of biogenic compounds and secondary processing accounted for 97% of the apportioned PM2.5 levels.


Advances in Meteorology | 2015

Vertical Raindrop Size Distribution in Central Spain: A Case Study

Roberto Fraile; Amaya Castro; Miguel González-Colino; Elisabeth Alonso-Blanco; María Fernández-Raga; Covadonga Palencia; Ana I. Calvo

A precipitation event that took place on 12 October 2008 in Madrid, Spain, is analyzed in detail. Three different devices were used to characterize the precipitation: a disdrometer, a rain gauge, and a Micro Rain Radar (MRR). These instruments determine precipitation intensity indirectly, based on measuring different parameters in different sampling points in the atmosphere. A comparative study was carried out based on the data provided by each of these devices, revealing that the disdrometer and the rain gauge measure similar precipitation intensity values, whereas the MRR measures different rain fall volumes. The distributions of drop sizes show that the mean diameter of the particles varied considerably depending on the altitude considered. The level at which saturation occurs in the atmosphere is decisive in the distribution of drop sizes between 2,700 m and 3,000 m. As time passes, the maximum precipitation intensities are registered at a lower height and are less intense. The maximum precipitation intensities occurred at altitudes above 1,000 m, while the maximum fall speeds are typically found at altitudes below 700 m.


Atmospheric Research | 2013

Research on aerosol sources and chemical composition: Past, current and emerging issues

Ana I. Calvo; Célia Alves; Amaya Castro; Véronique Pont; Ana Vicente; Roberto Fraile

Collaboration


Dive into the Ana I. Calvo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge