Ana I. Duarte
University of Coimbra
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana I. Duarte.
Nature Reviews Urology | 2012
Luís Rato; Marco G. Alves; Sílvia Socorro; Ana I. Duarte; José E. Cavaco; Pedro Oliveira
Male factor infertility is increasing in developed countries, and several factors linked to lifestyle have been shown to negatively affect spermatogenesis. Sertoli cells are pivotal to spermatogenesis, providing nutritional support to germ cells throughout their development. Sertoli cells display atypical features in their cellular metabolism; they can metabolize various substrates, preferentially glucose, the majority of which is converted to lactate and not oxidized via the tricarboxylic acid cycle. Why Sertoli cells preferentially export lactate for germ cells is not entirely understood. However, lactate is utilized as the main energy substrate by developing germ cells and has an antiapoptotic effect on these cells. Several biochemical mechanisms contribute to the modulation of lactate secretion by Sertoli cells. These include the transport of glucose through the plasma membrane, mediated by glucose transporters; the interconversion of pyruvate to lactate by lactate dehydrogenase; and the release of lactate mediated by monocarboxylate transporters. Several factors that modulate Sertoli cell metabolism have been identified, including sex steroid hormones, which are crucial for maintenance of energy homeostasis, influencing the metabolic balance of the whole body. In fact, energy status is essential for normal reproductive function, since the reproductive axis has the capacity to respond to metabolic cues.
Journal of Aging Research | 2012
Ana I. Duarte; Paula I. Moreira; Catarina R. Oliveira
Insulin signaling in central nervous system (CNS) has emerged as a novel field of research since decreased brain insulin levels and/or signaling were associated to impaired learning, memory, and age-related neurodegenerative diseases. Thus, besides its well-known role in longevity, insulin may constitute a promising therapy against diabetes- and age-related neurodegenerative disorders. More interestingly, insulin has been also faced as the potential missing link between diabetes and aging in CNS, with Alzheimers disease (AD) considered as the “brain-type diabetes.” In fact, brain insulin has been shown to regulate both peripheral and central glucose metabolism, neurotransmission, learning, and memory and to be neuroprotective. And a future challenge will be to unravel the complex interactions between aging and diabetes, which, we believe, will allow the development of efficient preventive and therapeutic strategies to overcome age-related diseases and to prolong human “healthy” longevity. Herewith, we aim to integrate the metabolic, neuromodulatory, and neuroprotective roles of insulin in two age-related pathologies: diabetes and AD, both in terms of intracellular signaling and potential therapeutic approach.
Journal of Alzheimer's Disease | 2009
Paula I. Moreira; Ana I. Duarte; Maria S. Santos; A. Cristina Rego; Catarina R. Oliveira
The processes underlying the pathogenesis of Alzheimers disease involve several factors including impaired glucose/energy metabolism, mitochondrial dysfunction, oxidative stress and altered insulin-signaling pathways. This review is mainly devoted to discuss evidence supporting the notion that mitochondrial dysfunction and oxidative stress are interconnected and intimately associated with the development and progression of Alzheimers disease. Furthermore, the review explores the role of insulin signaling in the pathophysiology of the disease. Indeed, several studies have begun to find links between insulin and mechanisms with clear pathogenic implications for this disorder. Understanding the key mechanisms involved in the etiopathogenesis of Alzheimers disease may provide opportunities for the design of efficacious preventive and therapeutic strategies.
Diabetes | 2006
Ana I. Duarte; Teresa Proença; Catarina R. Oliveira; Maria S. Santos; A. Cristina Rego
We previously demonstrated that insulin has a neuroprotective role against oxidative stress, a deleterious condition associated with diabetes, ischemia, and age-related neurodegenerative diseases. In this study, we investigated the effect of insulin on neuronal glucose uptake and metabolism after oxidative stress in rat primary cortical neurons. On oxidative stress, insulin stimulates neuronal glucose uptake and subsequent metabolism into pyruvate, restoring intracellular ATP and phosphocreatine. Insulin also increases intracellular and decreases extracellular adenosine, counteracting the effect of oxidative stress. Insulin effects are apparently mediated by phosphatidylinositol 3-K and extracellular signal–regulated kinase signaling pathways. Extracellular adenosine under oxidative stress is largely inhibited after blockade of ecto-5′-nucleotidase, suggesting that extracellular adenosine results preferentially from ATP release and catabolism. Moreover, insulin appears to interfere with the ATP release induced by oxidative stress, regulating extracellular adenosine levels. In conclusion, insulin neuroprotection against oxidative stress–mediated damage involves 1) stimulation of glucose uptake and metabolism, increasing energy levels and intracellular adenosine and, ultimately, uric acid formation and 2) a decrease in extracellular adenosine, which may reduce the facilitatory activity of adenosine receptors.
Biochimica et Biophysica Acta | 2014
Luís Rato; Ana I. Duarte; Gonçalo D. Tomás; Maria S. Santos; Paula I. Moreira; Sílvia Socorro; José E. Cavaco; Marco G. Alves; Pedro Oliveira
Pre-diabetes, a risk factor for type 2 diabetes development, leads to metabolic changes at testicular level. Peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α) and Sirtuin 3 (Sirt3) are pivotal in mitochondrial function. We hypothesized that pre-diabetes disrupts testicular PGC-1α/Sirt3 axis, compromising testicular mitochondrial function. Using a high-energy-diet induced pre-diabetic rat model, we evaluated testicular levels of PGC-1α and its downstream targets, nuclear respiratory factors 1 (NRF-1) and 2 (NRF-2), mitochondrial transcription factor A (TFAM) and Sirt3. We also assessed mitochondrial DNA (mtDNA) content, mitochondrial function, energy levels and oxidative stress parameters. Protein levels were quantified by Western Blot, mtDNA content was determined by qPCR. Mitochondrial complex activity and oxidative stress parameters were spectrophotometrically evaluated. Adenine nucleotide levels, adenosine and its metabolites (inosine and hypoxanthine) were determined by reverse-phase HPLC. Pre-diabetic rats showed increased blood glucose levels and impaired glucose tolerance. Both testicular PGC-1α and Sirt3 levels were decreased. NRF-1, NRF-2 and TFAM were not altered. Testicular mtDNA content was decreased. Mitochondrial complex I activity was increased, whereas mitochondrial complex III activity was decreased. Adenylate energy charge was decreased in pre-diabetic rats, as were ATP and ADP levels. Conversely, AMP levels were increased, evidencing a decreased ATP/AMP ratio. Concerning to oxidative stress pre-diabetes decreased testicular antioxidant capacity and increased lipid and protein oxidation. In sum, pre-diabetes compromises testicular mitochondrial function by repressing PGC-1α/Sirt3 axis and mtDNA copy number, declining respiratory capacity and increasing oxidative stress. This study gives new insights into overall testicular bioenergetics at this prodromal stage of disease.
Medicinal Chemistry | 2008
Sónia C. Correia; Cristina Carvalho; Maria S. Santos; Teresa Proença; Elsa Nunes; Ana I. Duarte; Pedro Monteiro; Raquel Seiça; Catarina R. Oliveira; Paula I. Moreira
We aimed to investigate whether metformin protects the brain against the oxidative imbalance promoted by type 2 diabetes. This study analyzed the effect of metformin on oxidative stress markers (thiobarbituric acid reactive substances (TBARS), malondialdehyde (MDA) and carbonyl groups), hydrogen peroxide (H(2)O(2)) levels, non-enzymatic antioxidant defenses [reduced (GSH) and oxidized (GSSG) glutathione and vitamin E] and enzymatic antioxidant defenses [glutathione peroxidase (GPx), glutathione reductase (GRed) and manganese superoxide dismutase (MnSOD)] in brain homogenates of diabetic GK rats, a model of type 2 diabetes. For this purpose we compared brain homogenates obtained from untreated GK rats versus GK rats treated with metformin during a period of 4 weeks. Brain homogenates obtained from Wistar rats were used as control. The MDA levels, GPx and GRed activities are significantly higher in untreated GK rats, while TBARS levels, carbonyl groups, glutathione content and vitamin E levels remain statistically unchanged when compared with control rats. In contrast, MnSOD activity and the levels of H(2)O(2) are significantly decreased in untreated GK rats when compared with control animals. However, metformin treatment normalized the majority of the parameters altered by diabetes. We observed that metformin, besides its antihyperglycemic action, induces a significant decrease in TBARS and MDA levels, GPx and GRed activities and a significant increase in GSH levels and MnSOD activity. These results indicate that metformin protects against diabetes-associated oxidative stress suggesting that metformin could be an effective neuroprotective agent.
Biochimica et Biophysica Acta | 2014
Ana I. Plácido; Cláudia Pereira; Ana I. Duarte; Emanuel Candeias; Sónia C. Correia; Renato X. Santos; Cristina Carvalho; Sandra M. Cardoso; Catarina R. Oliveira; Paula I. Moreira
The endoplasmic reticulum (ER) is the principal organelle responsible for the proper folding/processing of nascent proteins and perturbed ER function leads to a state known as ER stress. Mammalian cells try to overcome ER stress through a set of protein signaling pathways and transcription factors termed the unfolded protein response (UPR). However, under unresolvable ER stress conditions, the UPR is hyperactivated inducing cell dysfunction and death. The accumulation of misfolded proteins in the brain of Alzheimers disease (AD) patients suggests that alterations in ER homeostasis might be implicated in the neurodegenerative events that characterize this disorder. This review discusses the involvement of ER stress in the pathogenesis of AD, focusing the processing and trafficking of the AD-related amyloid precursor protein (APP) during disease development. The potential role of ER as a therapeutic target in AD will also be debated.
Current Drug Targets | 2010
Tatiana R. Rosenstock; Ana I. Duarte; A. Cristina Rego
Huntingtons disease (HD) is a genetic neurodegenerative disease selectively leading to striatal neurodegeneration, but also affecting the cortex and the hypothalamus. Although it is hard to predict the sequence of cell-damaging events occurring in HD patients, several pathological mechanisms have been proposed to explain HD selective neurodegeneration and disease symptomatology. Abnormalities in mitochondrial function and bioenergetics contribute to cell death and have been reported in HD-affected individuals, both in central and peripheral tissues. Moreover, the latter has been characterized in several HD models. Thus, this review describes the converging mechanisms that lead to mitochondrial and metabolic abnormalities in thoroughly studied in vivo and in vitro HD models, including excitotoxicity, altered calcium handling, changes in mitochondrial structure and dynamics and transcription deregulation, which may represent important disease therapeutic targets. Furthermore, the review describes the current evidences of metabolic disturbances in the brain of HD-affected humans and of peripheral metabolic and mitochondrial changes, weight loss and endocrine abnormalities operating in the whole HD body.
Frontiers in Endocrinology | 2014
Inês Sebastião; Emanuel Candeias; Maria S. Santos; Catarina R. Oliveira; Paula I. Moreira; Ana I. Duarte
Type 2 diabetes (T2D) and Alzheimer disease (AD) are two major health issues nowadays. T2D is an ever increasing epidemic, affecting millions of elderly people worldwide, with major repercussions in the patients’ daily life. This is mostly due to its chronic complications that may affect brain and constitutes a risk factor for AD. T2D principal hallmark is insulin resistance which also occurs in AD, rendering both pathologies more than mere unrelated diseases. This hypothesis has been reinforced in the recent years, with a high number of studies highlighting the existence of several common molecular links. As such, it is not surprising that AD has been considered as the “type 3 diabetes” or a “brain-specific T2D,” supporting the idea that a beneficial therapeutic strategy against T2D might be also beneficial against AD. Herewith, we aim to review some of the recent developments on the common features between T2D and AD, namely on insulin signaling and its participation in the regulation of amyloid β (Aβ) plaque and neurofibrillary tangle formation (the two major neuropathological hallmarks of AD). We also critically analyze the promising field that some anti-T2D drugs may protect against dementia and AD, with a special emphasis on the novel incretin/glucagon-like peptide-1 receptor agonists.
Free Radical Research | 2000
Maria S. Santos; Ana I. Duarte; Paula I. Moreira; Catarina R. Oliveira
It has been suggested that reactive oxygen species (ROS) play a role in the neuronal damage occurring in ischemic injury and neurodegenerative disorders and that their neutralization by antioxidant drugs may delay or minimize neurodegeneration. In the present study we examine whether vinpocetine can act as an antioxidant and prevent the formation of ROS and lipid peroxidation in rat brain synaptosomes. After ascorbate/Fe2+ treatment a significant increase in oxygen consumption (about 5-fold) and thiobarbituric acid reactive substances (TBARS) formation (about 7-fold) occurred as compared to control conditions. Vinpocetine inhibited the ascorbate/Fe2+ stimulated consumption of oxygen and TBARS accumulation, an indicator of lipid peroxidation, in a concentration-dependent manner. The ROS formation was also prevented by vinpocetine. Oxidative stress increased significantly the fluorescence of the probes 2′,7′-dichlorodihydrofluorescein (DCFH2-DA) (about 6-fold) and dihydrorhodamine (DHR) 123 (about 10-fold), which is indicative of intrasynaptosomal ROS generation. Vinpocetine at 100 μM concentration decreased the fluorescence of DCFH2-DA and DHR 123 by about 50% and 83%, respectively. We conclude that the antioxidant effect of vinpocetine might contribute to the protective role exerted by the drug in reducing neuronal damage in pathological situations.