Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana I. Flores is active.

Publication


Featured researches published by Ana I. Flores.


The Journal of Neuroscience | 2008

Constitutively Active Akt Induces Enhanced Myelination in the CNS

Ana I. Flores; S. Priyadarshini Narayanan; Emily N. Morse; H. Elizabeth Shick; Xinghua Yin; Grahame J. Kidd; Robin L. Avila; Daniel A. Kirschner; Wendy B. Macklin

The serine/threonine kinase Akt regulates multiple cellular functions. The current studies identify a new role for Akt in CNS myelination. In earlier studies on cultured oligodendrocytes, we showed that neuregulin signals through phosphatidylinositol-3′-OH kinase and Akt to enhance survival of oligodendrocytes. However, when transgenic animals were generated that overexpressed constitutively active Akt in oligodendrocytes and their progenitor cells, no enhanced survival of oligodendrocytes or progenitors was found. No alteration in the proliferation or death of progenitors was noted. In contrast, the major impact of Akt overexpression in oligodendrocytes was enhanced myelination. Most interestingly, oligodendrocytes in these mice continued actively myelinating throughout life. Thus, expression of constitutively active Akt in oligodendrocytes and their progenitor cells generated no more oligodendrocytes, but dramatically more myelin. The increased myelination continued as these mice aged, resulting in enlarged optic nerves and white matter areas. In older animals with enlarged white matter areas, the density of oligodendrocytes was reduced, but because of the increased area, the total number of oligodendrocytes remained comparable with wild-type controls. Interestingly, in these animals, overexpression of Akt in Schwann cells did not impact myelination. Thus, in vivo, constitutively active Akt enhances CNS myelination but not PNS myelination and has no impact developmentally on oligodendrocyte number. Understanding the unique aspects of Akt signal transduction in oligodendrocytes that lead to myelination rather than uncontrolled proliferation of oligodendrocyte progenitor cells may have important implications for understanding remyelination in the adult nervous system.


The Journal of Neuroscience | 2009

Akt signals through the mammalian target of rapamycin pathway to regulate CNS myelination

S. Priyadarshini Narayanan; Ana I. Flores; Feng Wang; Wendy B. Macklin

Mammalian target of rapamycin (mTOR), a well known Akt substrate, regulates multiple cellular functions including cell growth and protein synthesis. The current study identifies a novel role of the Akt/mTOR pathway as a regulator of CNS myelination. Previously, we showed that overexpressing constitutively active Akt in oligodendrocytes in a transgenic mouse model induces enhanced CNS myelination, with no changes in the proliferation or survival of oligodendrocyte progenitor or mature cells. The present study focused on the signaling mechanisms regulating this hypermyelination induced by Akt. Activation of mTOR and its downstream substrates (p70S6 kinase and S6 ribosomal protein) was observed in Akt-overexpressing oligodendrocytes. When mTOR signaling was inhibited chronically in vivo with rapamycin starting at 6 weeks of age, the observed hypermyelination was reduced to approximately the amount of myelin seen in wild-type mice. mTOR inhibition had little impact on wild-type myelination between 6 and 12 weeks of age, suggesting that, in normal adults, myelination is relatively complete and is no longer regulated by mTOR signaling. However, when mTOR was chronically inhibited in young adult wild-type mice, myelination was reduced. These results suggest that, during active myelination, the major Akt signal regulating CNS myelination is the mTOR pathway.


American Journal of Obstetrics and Gynecology | 2010

Isolation and characterization of true mesenchymal stem cells derived from human term decidua capable of multilineage differentiation into all 3 embryonic layers.

Maria I. Macias; Jesús Grande; Ana Moreno; Irene Domínguez; Rafael Bornstein; Ana I. Flores

OBJECTIVE The objective of the study was to isolate and characterize a population of mesenchymal stem cells (MSCs) from human term placental membranes. STUDY DESIGN We isolated an adherent cell population from extraembryonic membranes. Morphology, phenotype, growth characteristics, karyotype, and immunological and differentiation properties were analyzed. RESULTS The isolated placental MSCs were from maternal origin and named as decidua-derived mesenchymal stem cells (DMSCs). DMSCs differentiated into derivatives of all germ layers. It is the first report about placental MSC differentiation into alveolar type II cells. Clonally expanded DMSCs differentiated into all embryonic layers, including pulmonary cells. DMSCs showed higher life span than placental cells from fetal origin and proliferated without genomic instability. CONCLUSION The data suggest that DMSCs are true multipotent MSCs, distinguishing them from other placental MSCs. DMSCs could be safely used in the mother as a potential source of MSCs for pelvic floor dysfunctions and immunological diseases. Additionally, frozen DMSCs can be stored for both autologous and allogeneic tissue regeneration.


Transfusion | 2009

Consistency of the initial cell acquisition procedure is critical to the standardization of CD34+ cell enumeration by flow cytometry: results of a pairwise analysis of umbilical cord blood units and cryopreserved aliquots

Ana I. Flores; David H. McKenna; M. Angeles Montalbán; Javier De la Cruz; John E. Wagner; Rafael Bornstein

BACKGROUND: The CD34+ cell content is a predictive factor for engraftment and survival after umbilical cord blood (UCB) transplantation. The high variability in the CD34 assay results in different recommended cell doses for infusion across transplant centers and also limits the clinical utility of the CD34+ cell counts provided by cord blood banks (CBBs). This bi‐institutional study was intended to understand the sources of this variability.


Cancer Gene Therapy | 2013

Decidua mesenchymal stem cells migrated toward mammary tumors in vitro and in vivo affecting tumor growth and tumor development

I Vegh; M Grau; M.I. Gracia; Jesús Grande; P de la Torre; Ana I. Flores

Mesenchymal stem cells (MSCs) have affinity to tumor sites where they home, affecting their biology and growth. Previously, we have isolated mesenchymal cells from the decidua of the human placenta named as decidua-derived MSCs (DMSCs). The aims of the present study were to investigate the migration capacity of DMSCs in vitro, and in vivo in a preclinical model of mammary tumors induced by N-nitroso-N-methylurea (NMU). Additionally, we assessed the safety of DMSC administration in vivo and their effect on tumor growth. In vitro studies showed that DMSCs significantly migrate toward both, healthy human breast tissue and breast adenocarcinoma. Nevertheless, the effect on DMSC migration was significantly higher in the presence of tumor tissue. DMSCs also significantly migrated in vitro in the presence of NMU-mammary tumor homogenate when compared with control media alone. In vivo studies showed both migration and engraftment of DMSCs into NMU-induced tumors. Interestingly, DMSCs showed an inhibitory effect on the growth of primary tumors and in the development of new tumors. DMSCs did not affect the growth of secondary tumors, although secondary tumors appeared 2 weeks later, and the number of secondary tumors was lower in the DMSC-treated rats as compared with vehicle-treated rats. To our knowledge, this is the first report showing placental MSCs effect on tumor growth. In conclusion, DMSCs could serve as a therapeutic agent themselves and as a cellular vehicle of anticancer drugs.


Acta Biomaterialia | 2016

Decidua-derived mesenchymal stem cells as carriers of mesoporous silica nanoparticles. In vitro and in vivo evaluation on mammary tumors

Juan L. Paris; Paz de la Torre; Miguel Manzano; M. Victoria Cabañas; Ana I. Flores; María Vallet-Regí

UNLABELLED The potential use of human Decidua-derived mesenchymal stem cells (DMSCs) as a platform to carry mesoporous silica nanoparticles in cancer therapy has been investigated. Two types of nanoparticles were evaluated. The nanoparticles showed negligible toxicity to the cells, a fast uptake and a long retention inside them. Nanoparticle location in the cell was studied by colocalization with the lysosomes. Moreover, the in vitro and in vivo migration of DMSCs towards tumors was not modified by the evaluated nanoparticles. Finally, DMSCs transporting doxorubicin-loaded nanoparticles were capable of inducing cancer cell death in vitro. STATEMENT OF SIGNIFICANCE The use of nanotechnology for anticancer drug delivery has recently attracted great interest. Nanoparticles such as mesoporous silica nanoparticles (MSNs) can reach tumors, either by passive targeting, through the enhanced permeability and retention (EPR) effect, or active targeting, through the functionalization of nanoparticle surface. However, nanotechnology has not yet achieved the expected results in improving drug targeting, highlighting the need for a better localization of the nanoparticles in the tumors. Human mesenchymal stem cells from the decidua of the human placenta (DMSCs) have been observed to migrate towards tumors in a preclinical model of breast cancer. Moreover, they have been shown to inhibit growth of primary tumors and development of new tumors. In this work, combining MSNs and DMSCs, we have studied for the first time whether placental stem cells could be employed as a platform to load nanoparticles and carry them towards tumors for future anticancer therapies.


Cytotherapy | 2012

Human decidua-derived mesenchymal stromal cells differentiate into hepatic-like cells and form functional three-dimensional structures

Rafael Bornstein; Maria I. Macias; Paz de la Torre; Jesús Grande; Ana I. Flores

BACKGROUND AIMS Previously, we have shown that human decidua-derived mesenchymal stromal cells (DMSC) are mesenchymal stromal cells (MSC) with a clonal differentiation capacity for the three embryonic layers. The endodermal capacity of DMSC was revealed by differentiation into pulmonary cells. In this study, we examined the hepatic differentiation of DMSC. METHODS DMSC were cultured in hepatic differentiation media or co-cultured with murine liver homogenate and analyzed with phenotypic, molecular and functional tests. RESULTS AND CONCLUSIONS DMSC in hepatic differentiation media changed their fibroblast morphology to a hepatocyte-like morphology and later formed a 3-dimensional (3-D) structure or hepatosphere. Moreover, the hepatocyte-like cells and the hepatospheres expressed liver-specific markers such as synthesis of albumin (ALB), hepatocyte growth factor receptor (HGFR), α-fetoprotein (AFP) and cytokeratin-18 (CK-18), and exhibited hepatic functions including glycogen storage capacity and indocyanine green (ICG) uptake/secretion. Human DMSC co-cultured with murine liver tissue homogenate in a non-contact in vitro system showed hepatic differentiation, as evidenced by expression of AFP and ALB genes. The switch in the expression of these two genes resembled liver development. Indeed, the decrease in AFP and increase in ALB expression throughout the co-culture were consistent with the expression pattern observed during normal liver organogenesis in the embryo. Interestingly, AFP and ALB expression was significantly higher when DMSC were co-cultured with injured liver tissue, indicating that DMSC respond differently under normal and pathologic micro-environmental conditions. In conclusion, DMSC-derived hepatospheres and DMSC co-cultured with liver homogenate could be suitable in vitro models for toxicologic, developmental and pre-clinical hepatic regeneration studies.


Stem Cell Research & Therapy | 2016

Restrained Th17 response and myeloid cell infiltration into the central nervous system by human decidua-derived mesenchymal stem cells during experimental autoimmune encephalomyelitis

Beatriz Bravo; Marta I. Gallego; Ana I. Flores; Rafael Bornstein; Alba Puente-Bedia; Javier Hernández; Paz de la Torre; Elena García-Zaragoza; Raquel Perez-Tavarez; Jesús Grande; Alicia Ballester; Sara Ballester

BackgroundMultiple sclerosis is a widespread inflammatory demyelinating disease. Several immunomodulatory therapies are available, including interferon-β, glatiramer acetate, natalizumab, fingolimod, and mitoxantrone. Although useful to delay disease progression, they do not provide a definitive cure and are associated with some undesirable side-effects. Accordingly, the search for new therapeutic methods constitutes an active investigation field. The use of mesenchymal stem cells (MSCs) to modify the disease course is currently the subject of intense interest. Decidua-derived MSCs (DMSCs) are a cell population obtained from human placental extraembryonic membranes able to differentiate into the three germ layers. This study explores the therapeutic potential of DMSCs.MethodsWe used the experimental autoimmune encephalomyelitis (EAE) animal model to evaluate the effect of DMSCs on clinical signs of the disease and on the presence of inflammatory infiltrates in the central nervous system. We also compared the inflammatory profile of spleen T cells from DMSC-treated mice with that of EAE control animals, and the influence of DMSCs on the in vitro definition of the Th17 phenotype. Furthermore, we analyzed the effects on the presence of some critical cell types in central nervous system infiltrates.ResultsPreventive intraperitoneal injection of DMSCs resulted in a significant delay of external signs of EAE. In addition, treatment of animals already presenting with moderate symptoms resulted in mild EAE with reduced disease scores. Besides decreased inflammatory infiltration, diminished percentages of CD4+IL17+, CD11b+Ly6G+ and CD11b+Ly6C+ cells were found in infiltrates of treated animals. Early immune response was mitigated, with spleen cells of DMSC-treated mice displaying low proliferative response to antigen, decreased production of interleukin (IL)-17, and increased production of the anti-inflammatory cytokines IL-4 and IL-10. Moreover, lower RORγT and higher GATA-3 expression levels were detected in DMSC-treated mice. DMSCs also showed a detrimental influence on the in vitro definition of the Th17 phenotype.ConclusionsDMSCs modulated the clinical course of EAE, modified the frequency and cell composition of the central nervous system infiltrates during the disease, and mediated an impairment of Th17 phenotype establishment in favor of the Th2 subtype. These results suggest that DMSCs might provide a new cell-based therapy for the control of multiple sclerosis.


PLOS ONE | 2014

Human decidua-derived mesenchymal stem cells differentiate into functional alveolar type II-like cells that synthesize and secrete pulmonary surfactant complexes.

Alejandro Cerrada; Paz de la Torre; Jesús Grande; Thomas Haller; Ana I. Flores; Jesús Pérez-Gil

Lung alveolar type II (ATII) cells are specialized in the synthesis and secretion of pulmonary surfactant, a lipid-protein complex that reduces surface tension to minimize the work of breathing. Surfactant synthesis, assembly and secretion are closely regulated and its impairment is associated with severe respiratory disorders. At present, well-established ATII cell culture models are not available. In this work, Decidua-derived Mesenchymal Stem Cells (DMSCs) have been differentiated into Alveolar Type II- Like Cells (ATII-LCs), which display membranous cytoplasmic organelles resembling lamellar bodies, the organelles involved in surfactant storage and secretion by native ATII cells, and accumulate disaturated phospholipid species, a surfactant hallmark. Expression of characteristic ATII cells markers was demonstrated in ATII-LCs at gene and protein level. Mimicking the response of ATII cells to secretagogues, ATII-LCs were able to exocytose lipid-rich assemblies, which displayed highly surface active capabilities, including faster interfacial adsorption kinetics than standard native surfactant, even in the presence of inhibitory agents. ATII-LCs could constitute a highly useful ex vivo model for the study of surfactant biogenesis and the mechanisms involved in protein processing and lipid trafficking, as well as the packing and storage of surfactant complexes.


Archive | 2012

Biomarkers, Stem Cells and Esophageal Cancer

Irene Vegh; Ana I. Flores

There are two main forms of esophagus cancer with different malignant behaviors: epidermal or squamous carcinoma (ESCC) and esophagus adenocarcinoma (EA). ESCC is associated with ethanol and tobacco consumption (tobacco-specific-Nnitroso compounds). ESCC is among the more aggressive cancers known. The high mortality rate associated with this type of cancer is directly related to a late diagnosis. Thus there is an important challenge to identify biomarkers for early diagnosis (Shimada et al., 2003; Sobin & Fleming, 1997).

Collaboration


Dive into the Ana I. Flores's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wendy B. Macklin

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Irene Vegh

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

M. Victoria Cabañas

Complutense University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge