Ana Isabel Fernandes
University of London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana Isabel Fernandes.
Biochimica et Biophysica Acta | 1997
Ana Isabel Fernandes; Gregory Gregoriadis
Erwinia carotovora L-asparaginase was coupled covalently to colominic acid, a low molecular mass polysialic acid, by reductive amination. Depending on the molar ratios of colominic acid-asparaginase (50:1, 100:1 and 250:1), polysialylated constructs contained 4.2-8.1 molecules of colominic acid per molecule of enzyme. Such constructs retained most (82-86%) of the initial asparaginase activity and also maintained the Km values of the native enzyme towards the substrate asparagine. On exposure to (mouse) blood plasma at 37 degrees C, polysialylated asparaginase constructs exhibited resistance to proteolysis with 65-83% of the initial enzyme activity still present after 6 h. In contrast, most of the native enzyme was inactivated under the same conditions. In vivo experiments with intravenously injected mice revealed a significant increase in the half-life of the polysialylated asparaginase over that observed with the native enzyme. Such an increase was greatest (250%, about 38 h) for the construct with the highest degree of polysialylation. Results suggest that polysialylation of asparaginase and other proteins may provide an alternative means to improve their effective use in therapeutics.
International Journal of Pharmaceutics | 2001
Ana Isabel Fernandes; Gregory Gregoriadis
Erwinia carotovora L-asparaginase was conjugated via the epsilon-amino groups of its lysine residues with colominic acid (CA) (polysialic acid) of average molecular mass of 10 kDa by reductive amination in the presence of NaCNBH3. Polysialylation using 50-, 100- and 250-fold molar excess CA relative to the enzyme led to an increasing proportion of the enzymes in-amino groups (5.8, 7.6 and 11.3%, respectively) being conjugated to CA. Polysialylated and native (intact) asparaginase were used to immunize mice intravenously. Results (total IgG immune responses) indicate that all preparations elicited antibody production against the enzyme moiety but not against the CA of the conjugates. Moreover, antibody titres appeared highest for the native enzyme and were generally reduced as the degree of polysialylation increased. In other experiments mice pre-immunized with native or polysialylated asparaginase, with anti-asparaginase antibodies in their blood, were injected intravenously with the corresponding enzyme preparations. Results revealed that polysialylation reduces the antigenicity of asparaginase thus leading to circulatory half-lives (t 1/2 beta) that were 3-4-fold greater than that of the native enzyme, and similar to those observed in naive, non-immunized mice. Our data suggest that polysialylation of therapeutic enzymes and other proteins may be useful in maintaining their pharmacokinetics in individuals with antibodies to the therapeutic proteins as a result of chronic treatment.
Cellular and Molecular Life Sciences | 2000
Gregory Gregoriadis; Ana Isabel Fernandes; Malini Mital; Brenda McCormack
Abstract. Naturally occurring polymers of N-acetylneuraminic acid (polysialic acids) are biodegradable, highly hydrophilic and have no known receptors in the body. Following intravenous injection, polysialic acids exhibit long half-lives in the blood circulation and have therefore been proposed as carriers of short-lived drugs and small peptides. In addition, shorter-chain polysialic acids can be used as a means to increase the circulatory half-life of proteins and thus serve as an alternative to the nonbiodegradable monomethoxypoly(ethylene glycol). Recent work has shown that covalent coupling of a low molecular weight polysialic acid (colominic acid) to catalase and asparaginase leads to a considerable increase of enzyme stability in the presence of proteolytic enzymes or blood plasma. Comparative studies in vivo with polysialylated and intact asparaginase revealed that polysialylation significantly increases the half-life of the enzyme. The highly hydrophilic and innocuous nature of polysialic acids renders them suitable as a means to prolong the circulation of peptides and proteins.
Biochimica et Biophysica Acta | 1996
Ana Isabel Fernandes; Gregory Gregoriadis
Colominic acid (CA), an alpha-(2-->8) N-acetylneuraminic acid (sialic acid) polymer (average molecular weight of 10 kDa) was activated by periodate oxidation of carbon 7 at the non-reducing end of the saccharide. The oxidized CA was then coupled to catalase by reductive amination in the presence of sodium cyanoborohydride. The extent of sialylation of catalase, estimated by ammonium sulfate precipitation as 3.8+/-0.4 (mean+/-S.D.) moles of CA per mole of catalase, did not improve significantly when depolymerized CA was used in the coupling reaction. At the end of the coupling reaction, sialylated catalase exhibited a two-fold (70%) retention of initial activity compared to enzyme controls (29-35%) subjected to the same conditions. Formation of sialylated catalase was confirmed by ammonium sulfate or trichloroacetic acid precipitation, molecular sieve chromatography and SDS-PAGE electrophoresis. Enzyme kinetics studies revealed an increase in the apparent Km of the enzyme from 70.0 (native) to 122.9 mmol l-1 H2O2 (sialylated catalase) indicating a reduction of enzyme affinity for the substrate (hydrogen peroxide) on sialylation. Compared to native enzyme, sialylated catalase was much more stable in the presence of specific proteinases, completely resisting degradation by chymotrypsin and losing only some of its activity in the presence of trypsin. The increased stability conferred to catalase by sialylation agrees with similar observations on enzymes modified by other hydrophilic molecules (e.g., monomethoxypoly(ethyleneglycol)) and suggests that steric stabilization with the biodegradable polysialic acid may prove an alternative means to render therapeutic proteins more effective in vivo.
Journal of Biomaterials Science-polymer Edition | 2009
M. T. Calejo; Z. B. Morais; Ana Isabel Fernandes
A preliminary biochemical approach to the study of collagen isolated from the medusa Catostylus tagi is reported and results are discussed in view of its use as a natural matrix for biomedical applications. Collagen from the jellyfish umbrella was isolated by pepsin digestion and purified by dialysis and salt precipitation. As expected, glycine represented almost one-third of the total amino acids. Aromatic amino-acid content was very low and imino acids were fewer than in collagens from fish and mammalian sources. Results from SDS-PAGE, ion-exchange chromatography and N-terminal amino-acid sequencing revealed an α1α2α3 heterotrimer, similar to vertebrate type V/XI. The molecular mass of two of the polypeptide chains was close to 85 kDa and 100 kDa for the third. However, the two chains presenting similar molecular mass, showed differences in charge and primary structure. Further characterisation showed a glycosylated protein with the carbohydrate moiety comprising almost 7% of the total mass, a denaturation temperature of 29.9°C and multiple isoelectric points. Incubation with glutamyl endopeptidase resulted in significant digestion, in agreement with the proteins high content of Asp and Glu.
Journal of Biomaterials Science-polymer Edition | 2015
Raquel Galante; Patrizia Paradiso; Maria Guilhermina Moutinho; Ana Isabel Fernandes; José Mata; A.P. Alves de Matos; R. Colaço; Benilde Saramago; Ana Paula Serro
The development of new ophthalmic drug delivery systems capable of increasing the residence time of drugs in the eye and improve its bioavailability relatively to eyedrops has been object of intense research in recent years. Several studies have shown that drug-loaded therapeutic soft contact lenses (SCLs) constitute a promising approach, with several potential advantages as compared with collyria. The main objective of this work is to study the effect of repetitive load and friction cycles caused by the eye blinking, on the drug release from hydrogels used in SCLs which, as far as we know, was never investigated before. Two poly-2-hydroxyethylmethacrylate-based hydrogels, pHEMA-T and pHEMA-UV, were used as model materials. Levofloxaxin was chosen as model drug. The hydrogels were fully characterized in what concerns structural and physicochemical properties. pHEMA-UV revealed some superficial porosity and a lower short-range order than pHEMA-T. We observe that the load and friction cycles enhanced the drug release from pHEMA-UV hydrogels. The application of a simple mathematical model, which takes into account the drug dilution caused by the tear flow, showed that the enhancement of the drug release caused by blinking on this hydrogel may be relevant in in vivo conditions. Conversely, the more sustained drug release from pHEMA-T is not affected by load and friction cycles. The conclusion is that, depending on the physicochemical and microstructural characteristics of the hydrogels, blinking is a factor that may affect the amount of drug delivered to the eye by SCLs and should thus be considered.
Archive | 1998
Gregory Gregoriadis; Ana Isabel Fernandes; Brenda McCormack; Malini Mital; Xiaoqin Zhang
Optimal use of drugs often requires their extended presence within the vascular system or in extravascular areas (Gregoriadis et al, 1994). For instance, some antibiotics and cytostatics and a variety of peptides and proteins including hormones, cytokines, enzymes, antibodies and haemoglobin (as a blood surrogate) are excreted or removed from the circulation by tissues rapidly and before therapeutic concentrations in target areas can be achieved. Such drugs could be more effective, less toxic and also used in smaller quantities if their presence in the blood circulation (and hence interaction with corresponding receptors or substrates intravascularly or extravascularly) could be prolonged (Lee et al., 1995). In the same way, prolonged circulation of drug delivery systems such as liposomes (Gregoriadis, 1995), other colloidal systems (Davis et al., 1984) and polymers (Domb et al., 1997) would facilitate targeting of drugs to cells other than those (e.g. the reticuloendothelial system; RES) by which many of these systems are normally intercepted (Gregoriadis, 1995; Lee et al., 1995)
Journal of Microencapsulation | 2012
M. T. Calejo; António J. Almeida; Ana Isabel Fernandes
A microparticulate protein delivery system was developed using collagen, from the medusa Catostylus tagi, as a polymeric matrix. Collagen microparticles (CMPs) were produced by an emulsification-gelation-solvent extraction method and a high loading efficiency was found for the entrapment of lysozyme and α-lactalbumin. CMPs were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). The uncross-linked CMPs were spherical, rough-surfaced, presenting an estimated median size of 28 µm by laser diffraction. Upon cross-linking, particle size (9.5 µm) and size distribution were reduced. CMPs showed a moderate hydrophobic behaviour and a positive surface charge. Cross-linking also resulted in greater stability in water, allowing a slow release, as shown by in vitro experiments. The assessment of lysozymes biological activity showed that the protein remained active throughout the encapsulation and cross-linking processes. In summary, the work herein described shows the potential use of a marine collagen in the production of microparticles for the controlled release of therapeutic proteins.
Journal of Pharmacy and Pharmacology | 2017
João P. Aguiar; Tânia A.P. Fernandes; Carlotta Nese; Ana Isabel Fernandes; João F. Pinto
This work evaluates the potential of using fresh milk to deliver theophylline to children.
Journal of Pharmaceutical Analysis | 2017
Tânia A.P. Fernandes; João P. Aguiar; Ana Isabel Fernandes; João F. Pinto
A simple, accurate and sensitive high-performance liquid chromatography (HPLC) method was developed, validated and applied to the determination of either theophylline or paracetamol in milk-based samples. The method allowed drug quantification in fresh and powdered milk with a relatively short run time of analysis and it was also successfully applied to the quantification of the drugs in solid dosage forms intended for pediatric use. Moreover, the main significant advantages over other published works are the simplicity of the sample preparation, reduced assay time and sample loss. The method meets the International Conference on Harmonization guideline for analytical methods validation regarding specificity, linearity, accuracy, precision, specificity and robustness as required by health authorities and applied by industry while designing and marketing new drug products. The technique encompasses the separation of the analytes with a reverse phase C18 column under isocratic conditions and UV detection at 272 nm and 243 nm, respectively, for theophylline and paracetamol. The lower limit of quantification for both drugs was determined as 0.2 µg/mL and the between-batch accuracy was approximately 99.7%. This HPLC method allows quantification of theophylline and paracetamol in milk matrices and it can be applied in the design, development and production of milk-based pediatric dosage forms.