Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana M. Balaszczuk is active.

Publication


Featured researches published by Ana M. Balaszczuk.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Moderate zinc restriction during fetal and postnatal growth of rats: effects on adult arterial blood pressure and kidney

Analia Lorena Tomat; Felipe Inserra; Luciana C. Veiras; Maria Constanza Vallone; Ana M. Balaszczuk; María A. Costa; Cristina Arranz

Intrauterine and postnatal zinc restriction may result in an adverse environment for the development of cardiovascular and renal systems. This study evaluated the effects of moderate zinc deficiency during fetal life, lactation, and/or postweaning growth on systolic blood pressure, renal function, and morphology in adult life. Female Wistar rats received low (8 ppm) or control (30 ppm) zinc diets from the beginning of pregnancy up to weaning. After weaning, male offspring of each group of mothers were fed low or control zinc diet. Systolic blood pressure, creatinine clearance, proteinuria, renal morphology, renal apoptosis. and renal oxidative stress state were evaluated after 60 days. Zinc deficiency during pre- and postweaning growth induced an increase in systolic blood pressure and a decrease in the glomerular filtration rate associated with a reduction in the number and size of nephrons. Activation of renal apoptosis, reduction in catalase activity, glutathione peroxidase activity, and glutathione levels and increase in lipid peroxidation end products could explain these morphometric changes. Zinc deficiency through pre- and postweaning growth induced more pronounced renal alteration than postweaning zinc deficiency. These animals showed signs of renal fibrosis, proteinuria, increased renal apoptosis, and higher lipid peroxidation end products. A control diet during postweaning growth did not totally overcome renal oxidative stress damage, apoptosis, and fibrosis induced by zinc deficiency before weaning. In conclusion, zinc deficiency during a critical period of renal development and maturation could induce functional and morphological alterations that result in elevated blood pressure and renal dysfunction in adult life.


Regulatory Peptides | 2004

Atrial natriuretic peptide influence on nitric oxide system in kidney and heart.

María A. Costa; Rosana Elesgaray; Analia S. Loria; Ana M. Balaszczuk; Cristina Arranz

Atrial natriuretic peptide (ANP) and nitric oxide (NO) induce diuresis, natriuresis and diminish vascular tone. Our previous studies showed NO system is involved in ANP hypotensive effect. The aim was to investigate ANP effects on renal and cardiac NO-synthase (NOS) activity. Rats were divided into two groups: group I, infused with saline (1 h, 0.05 ml/min); group II, received ANP bolus (5 microg/kg)+ANP infusion (1 h, 0.2 microg/kg x min). NADPH-diaphorase activity (NADPH-d) was determined in kidney and heart. NOS catalytic activity was determined in renal medulla and cortex and cardiac atria and ventricle by measuring the conversion of l-[U(14)C]-arginine to l-[U(14)C]-citrulline. In group I, NOS activity was determined in basal conditions and plus 1 microM ANP and in group II, NOS activity was determined in basal conditions. NADPH-d was higher in group II than in group I in glomeruli, proximal tubule, cortical and medullar collecting duct, right atria and left ventricle. NOS activity was increased by in vitro ANP addition and, in vivo, ANP infusion in all the studied tissues. ANP treatment increases renal and cardiac NO synthesis. This effect would be independent on the hemodynamic changes induced by ANP. The activation of NO pathway would be one of the mechanisms involved in diuretic, natriuretic and hypotensive effects of ANP.


British Journal of Nutrition | 2010

Exposure to zinc deficiency in fetal and postnatal life determines nitric oxide system activity and arterial blood pressure levels in adult rats

Analia Lorena Tomat; Rosana Elesgaray; Valeria Zago; Héctor Fasoli; Andrea L. Fellet; Ana M. Balaszczuk; Laura Schreier; María A. Costa; Cristina Arranz

We had previously shown that prenatal exposure to Zn-deficient diets induces an increase in blood pressure and impairs renal function in adult rats. The aim of the present study was to investigate if moderate Zn restriction during early growth periods, fetal life and lactation would induce impairment in the vascular and renal NO system and alterations in plasma lipid profile. We also investigated if these effects persisted into adult life, even when a Zn-replete diet was provided after weaning. Pregnant rats were fed control (30 parts per million (ppm)) or low (8 ppm) Zn diets throughout gestation up to weaning. Afterwards, male offspring from low-Zn mothers were assigned to low- or control-Zn diets during 60 d. Male offspring from control mothers were fed a control diet. Animals exposed to Zn restriction showed low birth weight, increased systolic blood pressure and serum TAG levels, and decreased glomerular filtration rate in adulthood. Zn restriction induced a decrease in vascular and renal NO synthase activity and a reduced expression of the endothelial NO synthase isoform in aorta. A control-Zn diet during post-weaning growth returned TAG levels to normal but was unsuccessful in normalising systolic blood pressure, glomerular filtration rate or NO system activity in Zn-deficient offspring. Zn restriction during fetal life, lactation and/or post-weaning growth induced alterations in the vascular and renal NO system and in lipid metabolism that could contribute to the programming of hypertension and renal dysfunction in adulthood.


Regulatory Peptides | 2006

Role of NPR-C natriuretic receptor in nitric oxide system activation induced by atrial natriuretic peptide

María A. Costa; Rosana Elesgaray; Ana M. Balaszczuk; Cristina Arranz

Atrial natriuretic peptide (ANP) exerts its hypotensive, natriuretic and diuretic effects, almost in part, through the activation of nitric oxide synthase (NOS). The aim was to investigate the natriuretic receptor type and the signaling cascade involved in NOS activation induced by ANP. Male Wistar rats were sacrificed and NOS activity was determined in kidney, aorta and heart with L-[U14C]-arginine, as substrate. ANP and cANP (4-23), a selective NPR-C ligand, increased NOS activity in all tissues. ANP induced a more marked activation in aorta and kidney than cANP (4-23), but no difference in atria NOS activation was observed. NOS activity induced by both peptides was blunted by nifedipine (L-type channel blocker) and calmidazolium (calmodulin antagonist) in heart and aorta. In kidney, nifedipine and calmidazolium abolished NOS activity stimulated by cANP (4-23) but only partially inhibited NOS activity elicited by ANP. Gi inhibition with pertussis toxin abolished NOS activity stimulated by ANP and cANP in atria but only partially inhibited the increased NOS activity induced by ANP and cANP in kidney, aorta and ventricle. Our results show that NPR-C receptor would mediate the activation of NOS by ANP in atria. In kidney, aorta and ventricle, NOS activation would also involve NPR-A and/or B. ANP would interact with NPR-C coupled via Gi to activation Ca2+ -dependent NOS.


Pediatric Research | 2005

Moderate zinc deficiency influences arterial blood pressure and vascular nitric oxide pathway in growing rats.

Analia Lorena Tomat; Adriana Weisstaub; Agustín Jauregui; Adriana Piñeiro; Ana M. Balaszczuk; María A. Costa; Cristina Arranz

There is an increasing interest in the involvement of trace elements such as zinc in the pathogenesis of cardiovascular diseases. This study was designed to examine whether moderate zinc deficiency during growth influences blood pressure (BP) and vascular nitric oxide (NO) pathway. Three-week-old weaned male Wistar rats were randomly divided into two dietary groups and fed either a moderately zinc-deficient diet (zinc content 9 mg/kg; n = 12) or a control diet (zinc content 30 mg/kg; n = 12) for 60 d. The following were measured: systolic BP, nitrates and nitrites urinary excretion, urinary chemiluminescence intensity, NADPH-diaphorase activity in the thoracic aorta and intestinal arterioles, and NO synthase (NOS) catalytic activity using l-[U14C]-arginine as substrate in the thoracic aorta. Zinc deficiency during growth induced an increase in BP from day 30 of the experimental period, leading to hypertension on day 60. Animals that were fed the zinc-deficient diet had lower urinary excretion levels of nitrates and nitrites and higher intensity of spontaneous luminescence on day 60. At the end of the experiment, zinc-deficient rats showed decreased NADPH diaphorase activity in endothelium and smooth muscle of the thoracic aorta and intestinal arterioles and decreased activity of NOS in thoracic aortic tissue. An imbalance in zinc bioavailability during postnatal and growing periods may be may be a risk factor in development of cardiovascular alterations in adult life. The mechanisms involved may include an impaired vascular NO system as a result of decreased NOS activity and higher systemic oxidative stress.


Metabolism-clinical and Experimental | 2012

Hypothyroidism: age-related influence on cardiovascular nitric oxide system in rats

Lorena Sarati; Carla R. Martinez; Nicolás Artés; Noelia Arreche; Juan José López-Costa; Ana M. Balaszczuk; Andrea L. Fellet

This study investigates whether changes in nitric oxide (NO) production participate in the cardiovascular manifestations of hypothyroidism and whether these changes are age-related. Sprague-Dawley rats aged 2 and 18 months old were treated with 0.02% methimazole (wt/vol) during 28 days. Left ventricular function was evaluated by echocardiography. Measurements of arterial blood pressure, heart rate, nitric oxide synthase (NOS) activity and NOS/caveolin-1 and -3 protein levels were performed. Hypothyroidism enhanced the age-related changes in heart function. Hypothyroid state decreased atrial NOS activity in both young and adult rats, associated with a reduction in protein levels of the three NOS isoforms in young animals and increased caveolin (cav) 1 expression in adult rats. Ventricle and aorta NOS activity increased in young and adult hypothyroid animals. In ventricle, changes in NOS activity were accompanied by an increase in inducible NOS isoform in young rats and by an increase in caveolins expression in adult rats. Greater aorta NOS activity level in young and in adult Hypo rats would derive from the inducible and the endothelial NOS isoform, respectively. Thyroid hormones would be one of the factors involved in the modulation of cardiovascular NO production and caveolin-1 and -3 tissue-specific abundance, regardless of age. Hypothyroidism appears to contribute in a differential way to aging-induced changes in the myocardium and aorta tissues. Low thyroid hormones levels would enhance the aging effect on the heart. Age-related changes in NO production participate in the cardiovascular manifestations of hypothyroidism.


Vascular Pharmacology | 2008

Hypovolemic state: Involvement of nitric oxide in the aged related alterations of aquaporins-2 abundance in rat kidney

Noelia Arreche; Andrea L. Fellet; Margarita López; Juan José López-Costa; Cristina Arranz; Ana M. Balaszczuk

AIM To examine the effect of nitric oxide (NO) on the expression and/or localization of inner medulla collecting duct aquaporin-2 water channel (AQP2) in young and adult hemorrhaged anesthetized rats. METHODS Rats of 2 (young) and 12 mo (adult) old (n=15) were divided into: Sham animals with and without NG-nitro-l-arginine methyl ester (L-NAME) treatment (S L-NAME and S); hemorrhaged animals (20% blood loss) with and without L-NAME (H L-NAME and H). Mean arterial pressure (MAP) was continuously monitored and AQP2 expression and inmunolocalization were evaluated at 120 min after bleeding. RESULTS L-NAME blunted the hypotension induced by hemorrhage at 120 min in young (106+/-2 mm Hg) and adult (103+/-4 mm Hg) rats. AQP2 expression increased after bleeding in young (from 22 to 50 densitometric units) and adult rats (from 15 to 30 densitometric units). Pretreatment with L-NAME enhanced this effect, being this rise lower in adult than young animals (young: 318%, adult: 233%). Electron microscopy showed that AQP2 labeling increased after withdrawal, being the number of gold particles smaller in adult than young animals in the inner medulla. L-NAME enhanced this effect. CONCLUSION NOS activity decreases AQP2 expression/traffick in the inner collecting duct principal cells in response to hemorrhage and this effect is lower with aging.


American Journal of Hypertension | 2008

Cardiac Mitochondrial Nitric Oxide: A Regulator of Heart Rate?

Andrea L. Fellet; Alberto Boveris; Cristina Arranz; Ana M. Balaszczuk

Alterations in autonomic control and myocardial nitric-oxide (NO) production are likely linked to the development and progression of heart dysfunction. By focusing on heart rate, the complexity of the actions of NO at distinct levels throughout the autonomic nervous system and its relationship with other regulators can be demonstrated. Given the multiple and opposing actions of NO on cardiac control, it is difficult to interpret a response after a global intervention in the NO system. The diversity of intracellular pathways activated by NO, and their differing sensitivities to different levels of NO, might account for some aspects of reported specific but opposite effects. We discuss factors that might contribute to this diversity of actions. A proper elucidation of the effects of NO on metabolic pathways and on energy generation could lead to novel therapeutic strategies aimed at the early treatment of heart dysfunction.


Regulatory Peptides | 2012

Salt-induced downregulation of renal aquaporins is prevented by losartan.

Silvana L. Della Penna; Gabriel Cao; Andrea L. Fellet; Ana M. Balaszczuk; Elsa Zotta; Carolina S Cerrudo; Marcela Pandolfo; Jorge E. Toblli; Belisario E. Fernández; María Inés Rosón

AIMS The purpose of this study was to investigate the expression of aquaporin-1 (AQP-1) and aquaporin-2 (AQP-2) in the renal tubule of rats fed with a high-salt diet and its modulation by the AT1 receptor blocker losartan. MAIN METHODS The experiments were performed in four groups of rats fed for 3 weeks with the following diets: regular rat chow (NS); high-salt (8% NaCl) chow (HS), NS plus losartan (NS-L) and HS plus losartan (HS-L). Losartan (40 mg x kg(-1)) was administered in the drinking water. Systolic blood pressure (SBP) and renal function were evaluated. The intrarenal levels of angiotensin II (Ang II), TGF-β(1), α-smooth muscle actin (α-SMA), endothelial nitric oxide synthase (eNOS), AQP-1 and AQP-2 were determined by immunohistochemistry. AQP-1 and AQP-2 protein levels were measured by western blot analysis. KEY FINDINGS A high-sodium diet downregulated AQP-1 and AQP-2 expression levels in the proximal tubule and collecting duct, respectively. The high-sodium diet also induced Ang II, TGF-β(1) and α-SMA overexpression and decreased eNOS expression in the renal cortex and medulla. Losartan increased the diuresis and natriuresis, favoring urinary sodium concentration. Additionally, losartan prevented the profibrogenic response, decreasing Ang II, TGF-β(1) and α-SMA levels and normalizing AQP-2 expression in the HS-L group. AQP-1 expression was upregulated by losartan in both the NS-L and HS-L groups. SIGNIFICANCE These results show that increased intrarenal Ang II in rats fed with a high-salt diet downregulates renal AQP-1 and AQP-2 expressions. In addition, although losartan increased diuresis and natriuresis, it prevented the downregulation of aquaporins, favoring urinary sodium concentration.


Regulatory Peptides | 2012

Contribution of caveolin-1 to ventricular nitric oxide in age-related adaptation to hypovolemic state.

Noelia Arreche; Lorena Sarati; Carla R. Martinez; Andrea L. Fellet; Ana M. Balaszczuk

Our previous results have shown that hypovolemic state induced by acute hemorrhage in young anesthetized rats triggers heterogeneous and dynamic nitric oxide synthase (NOS) activation, modulating the cardiovascular response. Involvement of the nitric oxide pathway is both isoform-specific and time-dependent. The aim of the present study was to investigate changes in activity and protein levels of the different NOS forms, changes in the abundance of caveolin-1 during hypovolemic state and caveolin-1/eNOS association using young and middle-aged rats. Therefore, we studied (i) changes in NOS activity and protein levels and (ii) caveolin-1 abundance, as well as its association with endothelial NOS (eNOS) in ventricles from young and middle-aged rats during hypovolemic state. We used 2-month (young) and 12-month (middle-aged) old male Sprague-Dawley rats. Animals were divided into two groups (n=14/group): (a) sham; (b) hemorrhaged animals (20% blood loss). With advancing age, we observed an increase in ventricle NOS activity accompanied by a decrease in eNOS and caveolin-1 protein levels, but increased inducible NOS (iNOS). We also observed that aging is associated with caveolin-1 dissociation from eNOS. Myocardia from young and middle-aged rats subjected to hemorrhage-induced hypovolemia exhibited an increase in NOS activity and protein levels with a reduction in caveolin-1 abundance, accompanied by a greater dissociation between eNOS and its regulatory protein. Further, an increase in iNOS protein levels after blood loss was observed only in middle-aged rats. Our evidence suggests that aging and acute hemorrhage contribute to the development of upregulation in NOS activity. Our findings demonstrate that specific expression patterns of ventricular NOS isoforms, alterations in the amount of caveolin-1 and caveolin-1/eNOS interaction are involved in aged-related adjustment to hypovolemic state.

Collaboration


Dive into the Ana M. Balaszczuk's collaboration.

Top Co-Authors

Avatar

Andrea L. Fellet

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Cristina Arranz

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

María A. Costa

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Noelia Arreche

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Lorena Sarati

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto Boveris

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Carla R. Martinez

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Elsa Zotta

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge