Ana M. Diniz
Universidade Nova de Lisboa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana M. Diniz.
Phytochemistry | 2012
Yoann Leydet; Raquel Gavara; Vesselin Petrov; Ana M. Diniz; A. Jorge Parola; João C. Lima; Fernando Pina
The six most common 3-glucoside anthocyanins, pelargonidin-3-glucoside, peonidin-3-glucoside, delphinidin-3-glucoside, malvidin-3-glucoside, cyanidin-3-glucoside and petunidin-3-glucoside were studied in great detail by NMR, UV-vis absorption and stopped flow. For each anthocyanin, the thermodynamic and kinetic constants of the network of chemical reactions were calculated at different anthocyanin concentration, from 6 × 10⁻⁶ M up to 8 × 10⁻⁴ M; an increasing of the flavylium cation acidity constant to give quinoidal base and a decreasing of the flavylium cation hydration constant to give hemiketal were observed by increasing the anthocyanin concentration. These effects are attributed to the self-aggregation of the flavylium cation and quinoidal base, which is stronger in the last case. The UV-vis and ¹H NMR spectral variations resulting from the increasing of the anthocyanin concentration were discussed in terms of two aggregation models; monomer-dimer and isodesmic, the last one considering the formation of higher order aggregates possessing the same aggregation constant of the dimer. The self-aggregation constant of flavylium cation at pH=1.0, calculated by both models increases by increasing the number of methoxy (-OCH₃) or hydroxy (-OH) substituents following the order: myrtillin (2 -OH), oenin (2 -OCH₃), 3-OGl-petunidin (1 -OH, 1 -OCH₃), kuromanin (1 -OH), 3-OGl-peonidin (1 -OCH₃) and callistephin (none). Evidence for flavylium aggregates possessing a shape between J and H was achieved, as well as for the formation of higher order aggregates.
Journal of Physical Chemistry A | 2012
Sandra Gago; Vesselin Petrov; Ana M. Diniz; A. Jorge Parola; Luís Cunha-Silva; Fernando Pina
The introduction of an ester group in the flavylium core allowed the reversible conversion between two different flavylium compounds each one exhibiting its own reaction network. An unidirectional switching cycle between 7-diethylamino-2-(4-(methoxycarbonyl)phenyl)-1-benzopyrylium and 2-(4-carboxyphenyl)-7-diethylamino-1-benzopyrylium was achieved by means of alternate acid and base stimuli. Addition of base to a methanolic solution of the ester derivative gives rise to the trans-chalcone of the parent carboxylic acid, which upon acidification of the solution forms the respective flavylium cation. This species esterifies under very acidic conditions to restore the original methyl ester derivative. The chemical reaction networks of both compounds were fully characterized from their thermodynamic and kinetic aspects, by a series of pH jumps followed by UV-vis absorption and emission spectroscopy, stopped flow and (1)H NMR. The crystal structure of the trans-chalcone of the ester derivative was unveiled showing a supramolecular structure involving hydrogen bonding.
Chemistry: A European Journal | 2017
Ana M. Diniz; Jorge S. Dias; Jesús Jiménez-Barbero; Filipa Marcelo; Eurico J. Cabrita
Protein-glycan interactions as modulators for quinary structures in crowding environments were explored. The interaction between human galectin 3 (Gal-3) and distinct macromolecular crowders, such as bovine and human serum albumin (BSA and HSA), Ficoll 70 and PEG3350, was scrutinized. The molecular recognition event of the specific ligand, lactose, by Gal-3 in crowding conditions was evaluated. Gal-3 interactions were monitored by NMR analysing chemical shift perturbation (CSP) and line broadening of 1 H15 N-HSQC signals. The intensity of the Gal-3 1 H15 N-HSQC signals decreased in the presence of all crowders, due to the increase in the solution viscosity and to the formation of large protein complexes. When glycosylated containing samples of BSA and HSA were used, signal broadening was more severe than that observed in the presence of the more viscous solutions of PEG3350 and Ficoll 70. However, for the samples containing glycoproteins, the signal intensity of 1 H15 N-HSQC recovered upon addition of lactose. We show that serum proteins interact with Gal-3, through their α2,3-linked sialylgalactose moieties exposed at their surfaces, competing with lactose for the same binding site. The quinary interaction between Gal-3 and serum glycoproteins, could help to co-localize Gal-3 at the cell surface, and may play a role in adhesion and signalling functions of this protein.
Faraday Discussions | 2015
Ana M. Diniz; Nuno Basílio; Hugo Cruz; Fernando Pina; A. Jorge Parola
A multistate molecular dyad containing flavylium and viologen units was synthesized and the pH dependent thermodynamics of the network completely characterized by a variety of spectroscopic techniques such as NMR, UV-vis and stopped-flow. The flavylium cation is only stable at acidic pH values. Above pH ≈ 5 the hydration of the flavylium leads to the formation of the hemiketal followed by ring-opening tautomerization to give the cis-chalcone. Finally, this last species isomerizes to give the trans-chalcone. For the present system only the flavylium cation and the trans-chalcone species could be detected as being thermodynamically stable. The hemiketal and the cis-chalcone are kinetic intermediates with negligible concentrations at the equilibrium. All stable species of the network were found to form 1 : 1 and 2 : 1 host : guest complexes with cucurbit[7]uril (CB7) with association constants in the ranges 10(5)-10(8) M(-1) and 10(3)-10(4) M(-1), respectively. The 1 : 1 complexes were particularly interesting to devise pH responsive bistable pseudorotaxanes: at basic pH values (≈12) the flavylium cation interconverts into the deprotonated trans-chalcone in a few minutes and under these conditions the CB7 wheel was found to be located around the viologen unit. A decrease in pH to values around 1 regenerates the flavylium cation in seconds and the macrocycle is translocated to the middle of the axle. On the other hand, if the pH is decreased to 6, the deprotonated trans-chalcone is neutralized to give a metastable species that evolves to the thermodynamically stable flavylium cation in ca. 20 hours. By taking advantage of the pH-dependent kinetics of the trans-chalcone/flavylium interconversion, spatiotemporal control of the molecular organization in pseudorotaxane systems can be achieved.
ACS central science | 2018
M. De Las Rivas; E.J Paul Daniel; Helena Coelho; Erandi Lira-Navarrete; Lluís Raich; Ismael Compañón; Ana M. Diniz; L. Lagartera; Jesús Jiménez-Barbero; Henrik Clausen; Carme Rovira; Filipa Marcelo; Francisco Corzana; Thomas A. Gerken; Ramon Hurtado-Guerrero
Mucin-type O-glycosylation is initiated by a family of polypeptide GalNAc-transferases (GalNAc-Ts) which are type-II transmembrane proteins that contain Golgi luminal catalytic and lectin domains that are connected by a flexible linker. Several GalNAc-Ts, including GalNAc-T4, show both long-range and short-range prior glycosylation specificity, governed by their lectin and catalytic domains, respectively. While the mechanism of the lectin-domain-dependent glycosylation is well-known, the molecular basis for the catalytic-domain-dependent glycosylation of glycopeptides is unclear. Herein, we report the crystal structure of GalNAc-T4 bound to the diglycopeptide GAT*GAGAGAGT*TPGPG (containing two α-GalNAc glycosylated Thr (T*), the PXP motif and a “naked” Thr acceptor site) that describes its catalytic domain glycopeptide GalNAc binding site. Kinetic studies of wild-type and GalNAc binding site mutant enzymes show the lectin domain GalNAc binding activity dominates over the catalytic domain GalNAc binding activity and that these activities can be independently eliminated. Surprisingly, a flexible loop protruding from the lectin domain was found essential for the optimal activity of the catalytic domain. This work provides the first structural basis for the short-range glycosylation preferences of a GalNAc-T.
RSC Advances | 2013
Vesselin Petrov; Ana M. Diniz; Luís Cunha-Silva; A. Jorge Parola; Fernando Pina
2′-Hydroxyflavylium and 2′-hydroxyflavanone derivatives can be interconverted by a precise sequence of pH jumps, through the respective intermediate (mono) ionized trans-chalcones. In acidic and neutral media, the well known network of chemical reactions involving flavylium cation, quinoidal base, hemiketal, and cis and trans chalcones is established. In the pH range 8 < pH < 10, the chalcone (Ct) deprotonates and evolves to the formation of a flavanone (F). At higher pH values, the di-ionized trans-chalcone is the stable species, formed from the flavylium cation. Acidification of the di-ionized trans-chalcone gives the flavylium cation or the flavanone, via the mono-ionized trans-chalcone, respectively at pH < 1 and pH ≈ 9. In contrast with the chalcones, the flavanone once formed is stable even in acidic media. However, under strongly basic conditions, it leads back to the di-ionized trans-chalcone, the most stable species at more basic pH values, and the reactions leading to Ct−, F, Ct2−, Ct−, constitute a one direction cycle for interconversion of these species.
Photochemical and Photobiological Sciences | 2013
Giuseppe Calogero; Alessandro Sinopoli; Ilaria Citro; Gaetano Di Marco; Vesselin Petrov; Ana M. Diniz; A. Jorge Parola; Fernando Pina
Journal of Physical Chemistry B | 2009
Ana M. Diniz; Raquel Gomes; A. Jorge Parola; César A. T. Laia; Fernando Pina
Dyes and Pigments | 2009
Raquel Gomes; Ana M. Diniz; Alexandre Jesus; A. Jorge Parola; Fernando Pina
Chemistry: A European Journal | 2011
Ana M. Diniz; Carlos Pinheiro; Vesselin Petrov; A. Jorge Parola; Fernando Pina