Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana M. Ibáñez is active.

Publication


Featured researches published by Ana M. Ibáñez.


The Plant Cell | 2004

Dissection of Maize Kernel Composition and Starch Production by Candidate Gene Association

Larissa M. Wilson; Sherry R. Whitt; Ana M. Ibáñez; T. R. Rocheford; Major M. Goodman; Edward S. Buckler

Cereal starch production forms the basis of subsistence for much of the worlds human and domesticated animal populations. Starch concentration and composition in the maize (Zea mays ssp mays) kernel are complex traits controlled by many genes. In this study, an association approach was used to evaluate six maize candidate genes involved in kernel starch biosynthesis: amylose extender1 (ae1), brittle endosperm2 (bt2), shrunken1 (sh1), sh2, sugary1, and waxy1. Major kernel composition traits, such as protein, oil, and starch concentration, were assessed as well as important starch composition quality traits, including pasting properties and amylose levels. Overall, bt2, sh1, and sh2 showed significant associations for kernel composition traits, whereas ae1 and sh2 showed significant associations for starch pasting properties. ae1 and sh1 both associated with amylose levels. Additionally, haplotype analysis of sh2 suggested this gene is involved in starch viscosity properties and amylose content. Despite starch concentration being only moderately heritable for this particular panel of diverse maize inbreds, high resolution was achieved when evaluating these starch candidate genes, and diverse alleles for breeding and further molecular analysis were identified.


Food Microbiology | 2008

Reduction by gaseous ozone of Salmonella and microbial flora associated with fresh-cut cantaloupe

María V. Selma; Ana M. Ibáñez; Marita Cantwell; Trevor V. Suslow

This research investigates the efficacy of gaseous ozone, applied under partial vacuum in a controlled reaction chamber, for the elimination of Salmonella inoculated on melon rind. The performance of high dose, short duration treatment with gaseous ozone, in this pilot system, on the microbial and sensory quality of fresh-cut cantaloupes was also evaluated. Gaseous ozone (10,000 ppm for 30 min under vacuum) reduced viable, recoverable Salmonella from inoculated physiologically mature non-ripe and ripe melons with a maximum reduction of 4.2 and 2.8 log CFU/rind-disk (12.6 cm(2)), respectively. The efficacy of ozone exposure was influenced by carrier matrix. Salmonella adhering to cantaloupe was more resistant to ozone treatment when suspended in skim-milk powder before aqueous inoculation to the rind. This indicated that organic matter interferes with the contact efficiency and resultant antimicrobial activity of gaseous ozone applied as a surface disinfectant. Conversely, in the absence of an organic carrier, Salmonella viability loss was greater on dry exocarp surfaces than in the wetted surfaces, during ozone treatment, achieving reductions of 2.8 and 1.4 initial log CFU/rind-disk, respectively. Gaseous ozone treatment of 5000 and 20,000 ppm for 30 min reduced total coliforms, Pseudomonas fluorescens, yeast and lactic acid bacteria recovery from fresh-cut cantaloupe. A dose Ct-value (concentration x exposure time) of 600,000 ppm min achieved maximal log CFU/melon-cube reduction, under the test conditions. Finally, fresh-cut cantaloupe treated with gaseous ozone, maintained an acceptable visual quality, aroma and firmness during 7-day storage at 5 degrees C. Conclusions derived from this study illustrate that gaseous ozone is an effective option to risk reduction and spoilage control of fresh and fresh-cut melon. Moreover, depending on the timing of contamination and post-contamination conditions, rapid drying combined with gaseous ozone exposure may be successful as combined or sequential disinfection steps to minimize persistence of Salmonella on the surface of cantaloupe melons and transference during fresh-cut processing of home preparation. Based on these results, greater efficacy would be anticipated with mature but non-ripe melons while ripe tissues reduce the efficacy of these gaseous ozone treatments, potentially by oxidative reaction with soluble refractive solids.


Proceedings of the National Academy of Sciences of the United States of America | 2012

An engineered innate immune defense protects grapevines from Pierce disease

Abhaya M. Dandekar; Hossein Gouran; Ana M. Ibáñez; Sandra L. Uratsu; Cecilia B. Agüero; Sarah McFarland; Yasmin Borhani; Paul A. Feldstein; George Bruening; Rafael Nascimento; Luiz Ricardo Goulart; Paige E. Pardington; Anu Chaudhary; Meghan Norvell; Edwin L. Civerolo; Goutam Gupta

We postulated that a synergistic combination of two innate immune functions, pathogen surface recognition and lysis, in a protein chimera would lead to a robust class of engineered antimicrobial therapeutics for protection against pathogens. In support of our hypothesis, we have engineered such a chimera to protect against the Gram-negative Xylella fastidiosa (Xf), which causes diseases in multiple plants of economic importance. Here we report the design and delivery of this chimera to target the Xf subspecies fastidiosa (Xff), which causes Pierce disease in grapevines and poses a great threat to the wine-growing regions of California. One domain of this chimera is an elastase that recognizes and cleaves MopB, a conserved outer membrane protein of Xff. The second domain is a lytic peptide, cecropin B, which targets conserved lipid moieties and creates pores in the Xff outer membrane. A flexible linker joins the recognition and lysis domains, thereby ensuring correct folding of the individual domains and synergistic combination of their functions. The chimera transgene is fused with an amino-terminal signal sequence to facilitate delivery of the chimera to the plant xylem, the site of Xff colonization. We demonstrate that the protein chimera expressed in the xylem is able to directly target Xff, suppress its growth, and significantly decrease the leaf scorching and xylem clogging commonly associated with Pierce disease in grapevines. We believe that similar strategies involving protein chimeras can be developed to protect against many diseases caused by human and plant pathogens.


Journal of Agricultural and Food Chemistry | 2009

Superficial scald and bitter pit development in cold-stored transgenic apples suppressed for ethylene biosynthesis.

Edna Pesis; Ana M. Ibáñez; My L. Phu; Elizabeth J. Mitcham; Susan E. Ebeler; Abhaya M. Dandekar

The plant hormone ethylene regulates climacteric fruit ripening and plays a major role in the development of superficial scald in apple fruits during cold storage. The effect of cold storage at 0 degrees C on development of superficial scald and bitter pit (BP) in transgenic Greensleeves (GS) apples suppressed for ethylene biosynthesis was investigated. Four apple lines were used: untransformed GS; line 68G, suppressed for 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO); and lines 103Yand 130Y, suppressed for ACC synthase (ACS). Fruits from the transformed lines 68G, 103Y, and 130Y produced very little ethylene during 3 months of cold storage at 0 degrees C and after subsequent transfer to 20 degrees C, whereas untransformed fruits produced significant ethylene during cold storage, which increased dramatically at 20 degrees C. Respiration, expressed as CO(2) production, was similar in all four apple lines. After 2 months at 0 degrees C, all apple lines showed some BP symptoms, but lines 68G and 103Y were more affected than untransformed GS or line 130Y. Both transformed and untransformed apples produced alpha-farnesene, but concentrations were lower in yellow fruit than in green fruit in all lines but 68G. Line 68G produced the most alpha-farnesene after 2 months at 0 degrees C, including both (E,E) alpha-farnesene and (Z,E) alpha-farnesene. Concentrations of (E,E) alpha-farnesene were 100 times greater than those of (Z,E) alpha-farnesene in all lines. After 4 months at 0 degrees C plus 1 week at 20 degrees C, untransformed GS apples exhibited the most superficial scald, whereas fruits from lines 68G and 103Y were less affected and line 130Y had no scald. Superficial scald severity was higher in green fruit than in yellow fruit in all affected lines. These lines also exhibited significant production of 6-methyl-5-hepten-2-one (MHO), a major oxidation product of (E,E) alpha-farnesene. Line 130Y neither exhibited superficial scald nor produced MHO. It is shown here that even transgenic apples suppressed for ethylene biosynthesis genes can produce alpha-farnesene, which in turn can oxidize to free radicals and MHO, leading to scald development.


Plant Science | 2014

Transcriptome and metabolome analysis of Citrus fruit to elucidate puffing disorder

Ana M. Ibáñez; Federico Martinelli; Russell L. Reagan; Sandra L. Uratsu; Anna Vo; Mario A. Tinoco; My L. Phu; Ying Chen; David M. Rocke; Abhaya M. Dandekar

A systems-level analysis reveals details of molecular mechanisms underlying puffing disorder in Citrus fruit. Flavedo, albedo and juice sac tissues of normal fruits and fruits displaying symptoms of puffing disorder were studied using metabolomics at three developmental stages. Microarrays were used to compare normal and puffed fruits for each of the three tissues. A protein-protein interaction network inferred from previous work on Arabidopsis identified hub proteins whose transcripts show significant changes in expression. Glycolysis, the backbone of primary metabolism, appeared to be severely affected by the disorder, based on both transcriptomic and metabolomic results. Significantly less citric acid was observed consistently in puffed fruits. Gene set enrichment analysis suggested that glycolysis and carbohydrate metabolism were significantly altered in puffed samples in both albedo and flavedo. Expression of invertases and genes for sucrose export, amylose-starch and starch-maltose conversion was higher in puffed fruits. These changes may significantly alter source-sink communications. Genes associated with gibberellin and cytokinin signaling were downregulated in symptomatic albedo tissues, suggesting that these hormones play key roles in the disorder. Findings may be applied toward the development of early diagnostic methods based on host response genes and metabolites (i.e. citric acid), and toward therapeutics based on hormones.


Analytica Chimica Acta | 2009

Two-dimensional wavelet analysis based classification of gas chromatogram differential mobility spectrometry signals

Weixiang Zhao; Shankar Sankaran; Ana M. Ibáñez; Abhaya M. Dandekar; Cristina E. Davis

This study introduces two-dimensional (2-D) wavelet analysis to the classification of gas chromatogram differential mobility spectrometry (GC/DMS) data which are composed of retention time, compensation voltage, and corresponding intensities. One reported method to process such large data sets is to convert 2-D signals to 1-D signals by summing intensities either across retention time or compensation voltage, but it can lose important signal information in one data dimension. A 2-D wavelet analysis approach keeps the 2-D structure of original signals, while significantly reducing data size. We applied this feature extraction method to 2-D GC/DMS signals measured from control and disordered fruit and then employed two typical classification algorithms to testify the effects of the resultant features on chemical pattern recognition. Yielding a 93.3% accuracy of separating data from control and disordered fruit samples, 2-D wavelet analysis not only proves its feasibility to extract feature from original 2-D signals but also shows its superiority over the conventional feature extraction methods including converting 2-D to 1-D and selecting distinguishable pixels from training set. Furthermore, this process does not require coupling with specific pattern recognition methods, which may help ensure wide applications of this method to 2-D spectrometry data.


Frontiers in Plant Science | 2018

Identifying host molecular features strongly linked with responses to huanglongbing disease in citrus leaves

Bipin Balan; Ana M. Ibáñez; Abhaya M. Dandekar; Tiziano Caruso; Federico Martinelli

A bioinformatic analysis of previously published RNA-Seq studies on Huanglongbing (HLB) response and tolerance in leaf tissues was performed. The aim was to identify genes commonly modulated between studies and genes, pathways and gene set categories strongly associated with this devastating Citrus disease. Bioinformatic analysis of expression data of four datasets present in NCBI provided 46–68 million reads with an alignment percentage of 72.95–86.76%. Only 16 HLB-regulated genes were commonly identified between the three leaf datasets. Among them were key genes encoding proteins involved in cell wall modification such as CESA8, pectinesterase, expansin8, expansin beta 3.1, and a pectate lyase. Fourteen HLB-regulated genes were in common between all four datasets. Gene set enrichment analysis showed some different gene categories affected by HLB disease. Although sucrose and starch metabolism was highly linked with disease symptoms, different genes were significantly regulated depending on leaf growth and infection stages and experimental conditions. Histone-related transcription factors were highly affected by HLB in the analyzed RNA-Seq datasets. HLB tolerance was linked with induction of proteins involved in detoxification. Protein–protein interaction (PPI) network analysis confirmed a possible role for heat shock proteins in curbing disease progression.


Food Microbiology | 2008

Effect of gaseous ozone and hot water on microbial and sensory quality of cantaloupe and potential transference of Escherichia coli O157:H7 during cutting

María V. Selma; Ana M. Ibáñez; Ana Allende; Marita Cantwell; Trevor V. Suslow


Starch-starke | 2007

Gelatinization and Pasting Properties of Waxy and Non‐waxy Rice Starches

Inmyoung Park; Ana M. Ibáñez; Fang Zhong; Charles F. Shoemaker


Food Hydrocolloids | 2009

The effect of rice variety and starch isolation method on the pasting and rheological properties of rice starch pastes

Fang Zhong; Yue Li; Ana M. Ibáñez; Moon Hun Oh; Kent S. McKenzie; Charles F. Shoemaker

Collaboration


Dive into the Ana M. Ibáñez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inmyoung Park

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

My L. Phu

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge