Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana M. Masini-Repiso is active.

Publication


Featured researches published by Ana M. Masini-Repiso.


The FASEB Journal | 2008

Control of dendritic cell maturation and function by triiodothyronine

Iván D. Mascanfroni; María del Mar Montesinos; Sebastián Susperreguy; Laura Cervi; Juan M. Ilarregui; Vanesa D. Ramseyer; Ana M. Masini-Repiso; Héctor M. Targovnik; Gabriel A. Rabinovich; Claudia Gabriela Pellizas

Accumulating evidence indicates a functional crosstalk between immune and endocrine mechanisms in the modulation of innate and adaptive immunity. However, the impact of thyroid hormones (THs) in the initiation of adaptive immune responses has not yet been examined. Here we investigated the presence of thyroid hormone receptors (TRs) and the impact of THs in the physiology of mouse dendritic cells (DCs), specialized antigen‐presenting cells with the unique capacity to fully activate naive T cells and orchestrate adaptive immunity. Both immature and lipopolysaccharide‐matured bone marrow‐derived DCs expressed TRs at mRNA and protein levels, showing a preferential cytoplasmic localization. Remarkably, physiological levels of triiodothyronine (T3) stimulated the expression of DC maturation markers (major histocompatability complex II, CD80, CD86, and CD40), markedly in‐creased the secretion of interleukin‐12, and stimulated the ability of DCs to induce naive T cell proliferation and IFN‐γ production in allogeneic T cell cultures. Analysis of the mechanisms involved in these effects revealed the ability of T3 to influence the cytoplasmic‐nuclear shuttling of nuclear factor‐κB on primed DCs. Our study provides the first evidence for the presence of TRs on bone marrow‐derived DCs and the ability of THs to regulate DC maturation and function. These results have profound implications in immunopathology, including cancer and autoimmune manifestations of the thyroid gland at the crossroads of the immune and endocrine systems. Mascanfroni, I., Montesinos, M., Susperreguy, S., Cervi, L., Ilarregui, J. M., Ramseyer, V. D., Masini‐Repiso, A. M., Targovnik, H. M., Rabinovich, G. A., Pellizas, C. G. Control of dendritic cell maturation and function by triiodothyronine. FASEB J. 22, 1032–1042 (2008)


Endocrinology | 2014

The Acute Inhibitory Effect of Iodide Excess on Sodium/Iodide Symporter Expression and Activity Involves the PI3K/Akt Signaling Pathway

Caroline Serrano-Nascimento; Silvania da Silva Teixeira; Juan Pablo Nicola; Renato Tadeu Nachbar; Ana M. Masini-Repiso; Maria Tereza Nunes

Iodide (I(-)) is an irreplaceable constituent of thyroid hormones and an important regulator of thyroid function, because high concentrations of I(-) down-regulate sodium/iodide symporter (NIS) expression and function. In thyrocytes, activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) cascade also inhibits NIS expression and function. Because I(-) excess and PI3K/Akt signaling pathway induce similar inhibitory effects on NIS expression, we aimed to study whether the PI3K/Akt cascade mediates the acute and rapid inhibitory effect of I(-) excess on NIS expression/activity. Here, we reported that the treatment of PCCl3 cells with I(-) excess increased Akt phosphorylation under normal or TSH/insulin-starving conditions. I(-) stimulated Akt phosphorylation in a PI3K-dependent manner, because the use of PI3K inhibitors (wortmannin or 2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one) abrogated the induction of I(-) effect. Moreover, I(-) inhibitory effect on NIS expression and function were abolished when the cells were previously treated with specific inhibitors of PI3K or Akt (Akt1/2 kinase inhibitor). Importantly, we also found that the effect of I(-) on NIS expression involved the generation of reactive oxygen species (ROS). Using the fluorogenic probes dihydroethidium and mitochondrial superoxide indicator (MitoSOX Red), we observed that I(-) excess increased ROS production in thyrocytes and determined that mitochondria were the source of anion superoxide. Furthermore, the ROS scavengers N-acetyl cysteine and 2-phenyl-1,2-benzisoselenazol-3-(2H)-one blocked the effect of I(-) on Akt phosphorylation. Overall, our data demonstrated the involvement of the PI3K/Akt signaling pathway as a novel mediator of the I(-)-induced thyroid autoregulation, linking the role of thyroid oxidative state to the Wolff-Chaikoff effect.


Endocrinology | 2009

Functional Toll-Like Receptor 4 Conferring Lipopolysaccharide Responsiveness Is Expressed in Thyroid Cells

Juan Pablo Nicola; María Laura Vélez; Ariel Maximiliano Lucero; Laura Fozzatti; Claudia Gabriela Pellizas; Ana M. Masini-Repiso

Lipopolysaccharide (LPS), a glycolipid found in the cell wall of Gram-negative bacteria, exerts pleiotropic biological effects in different cell types. LPS is mainly recognized by the Toll-like receptor (TLR) 4/MD2/Cluster of differentiation 14 complex (CD14). We previously demonstrated that LPS produced a direct action on thyroid cells, including up-regulation of thyroglobulin gene expression. This work aimed to study further the effect of LPS on thyroid function and to elucidate the mechanism by which LPS is recognized by the thyroid cell. We could detect the transcript and protein expression of TLR4, MD2, and CD14 in thyroid cells, and that these proteins are localized at the plasma membrane. The sodium iodide symporter (NIS) is the transporter involved in the iodide uptake, the first step in thyroid hormonogenesis. We demonstrated that LPS increases the TSH-induced iodide uptake and NIS protein expression. The LPS agonist lipid A reproduced LPS effect, whereas the LPS antagonist, polymyxin B, abrogated it. By the use of anti-TLR4 blocking antibodies and the transient expression of TLR4 dominant-negative forms, we evidenced the involvement of TLR4 in the LPS action. The enrichment of TLR4 expressing Fisher rat thyroid cell line-5 (FRTL-5) cells confirmed that TLR4 confers LPS responsiveness to thyroid cells. In conclusion, we revealed for the first time that all the components of the LPS receptor complex are expressed in thyroid cells. Evidence that the effects of LPS on rodent thyroid function involve TLR4-induced signaling was obtained. The fact that thyroid cells are able to recognize and respond to LPS supports a role of the endotoxin as a potential modifier of thyroid function.


Journal of Biological Chemistry | 2010

Nuclear Factor (NF)-κB-dependent Thyroid Hormone Receptor β1 Expression Controls Dendritic Cell Function via Akt Signaling

Ivan D. Mascanfroni; María del Mar Montesinos; Vanina A. Alamino; Sebastián Susperreguy; Juan Pablo Nicola; Juan M. Ilarregui; Ana M. Masini-Repiso; Gabriel A. Rabinovich; Claudia Gabriela Pellizas

Despite considerable progress in our understanding of the interplay between immune and endocrine systems, the role of thyroid hormones and their receptors in the control of adaptive immunity is still uncertain. Here, we investigated the role of thyroid hormone receptor (TR) β1 signaling in modulating dendritic cell (DC) physiology and the intracellular mechanisms underlying these immunoregulatory effects. Exposure of DCs to triiodothyronine (T3) resulted in a rapid and sustained increase in Akt phosphorylation independently of phosphatidylinositol 3-kinase activation, which was essential for supporting T3-induced DC maturation and interleukin (IL)-12 production. This effect was dependent on intact TRβ1 signaling as small interfering RNA-mediated silencing of TRβ1 expression prevented T3-induced DC maturation and IL-12 secretion as well as Akt activation and IκB-ϵ degradation. In turn, T3 up-regulated TRβ1 expression through mechanisms involving NF-κB, suggesting an autocrine regulatory loop to control hormone-dependent TRβ1 signaling. These findings were confirmed by chromatin immunoprecipitation analysis, which disclosed a new functional NF-κB consensus site in the promoter region of the TRB1 gene. Thus, a T3-induced NF-κB-dependent mechanism controls TRβ1 expression, which in turn signals DCs to promote maturation and function via an Akt-dependent but PI3K-independent pathway. These results underscore a novel unrecognized target that regulates DC maturation and function with critical implications in immunopathology at the cross-roads of the immune-endocrine circuits.


Molecular Endocrinology | 2010

NF-κB p65 Subunit Mediates Lipopolysaccharide-Induced Na+/I- Symporter Gene Expression by Involving Functional Interaction with the Paired Domain Transcription Factor Pax8

Juan Pablo Nicola; Magalí Nazar; Iván D. Mascanfroni; Claudia Gabriela Pellizas; Ana M. Masini-Repiso

The Gram-negative bacterial endotoxin lipopolysaccharide (LPS) elicits a variety of biological responses. Na(+)/I(-) symporter (NIS)-mediated iodide uptake is the main rate-limiting step in thyroid hormonogenesis. We have recently reported that LPS stimulates TSH-induced iodide uptake. Here, we further analyzed the molecular mechanism involved in the LPS-induced NIS expression in Fisher rat thyroid cell line 5 (FRTL-5) thyroid cells. We observed an increase in TSH-induced NIS mRNA expression in a dose-dependent manner upon LPS treatment. LPS enhanced the TSH-stimulated NIS promoter activity denoting the NIS-upstream enhancer region (NUE) as responsible for the stimulatory effects. We characterized a novel putative conserved kappaB site for the transcription factor nuclear factor-kappaB (NF-kappaB) within the NUE region. NUE contains two binding sites for the transcription factor paired box 8 (Pax8), main regulator of NIS transcription. A physical interaction was observed between the NF-kappaB p65 subunit and paired box 8 (Pax8), which appears to be responsible for the synergic effect displayed by these transcription factors on NIS gene transcription. Moreover, functional blockage of NF-kappaB signaling and site-directed mutagenesis of the kappaB cis-acting element abrogated LPS stimulation. Silencing expression of p65 confirmed its participation as an effector of LPS-induced NIS stimulation. Furthermore, chromatin immunoprecipitation corroborated that NIS is a novel target gene for p65 transactivation in response to LPS. Moreover, we were able to corroborate the LPS-stimulatory effect on thyroid cells in vivo in LPS-treated rats, supporting that thyrocytes are capable of responding to systemic infections. In conclusion, our results reveal a new mechanism involving p65 in the LPS-induced NIS expression, denoting a novel aspect in thyroid cell differentiation.


The Journal of Physiology | 2012

Dietary iodide controls its own absorption through post-transcriptional regulation of the intestinal Na+/I− symporter

Juan Pablo Nicola; Andrea Reyna-Neyra; Nancy Carrasco; Ana M. Masini-Repiso

•  Expression of the Na+/I− symporter (NIS) at the apical surface of the epithelium of the small intestine is key to I− absorption, the first step in I− metabolism. •  Intracellular I− at high concentrations in enterocytes decreases its own NIS‐mediated uptake by a newly discovered mechanism, downregulating NIS expression at the plasma membrane, increasing NIS protein degradation and decreasing NIS mRNA levels by reducing NIS mRNA stability, involving the NIS 3′‐untranslated region. •  In conclusion, we have uncovered that I− regulates intestinal NIS expression, and thus its own intestinal absorption, by a complex array of post‐transcriptional mechanisms.


Endocrinology | 2012

Thyroid Peroxidase Gene Expression Is Induced by Lipopolysaccharide Involving Nuclear Factor (NF)-κB p65 Subunit Phosphorylation

Magalí Nazar; Juan Pablo Nicola; María Laura Vélez; Claudia Gabriela Pellizas; Ana M. Masini-Repiso

Thyroid peroxidase (TPO), a tissue-specific enzyme expressed in differentiated thyroid follicular cells, is a major antigen that has been linked to autoimmune thyroid disease. We have previously reported the functional expression of the lipopolysaccharide (LPS) receptor Toll-like receptor 4 on thyroid follicular cells. Here we investigated the effect of LPS in TPO expression and analyzed the mechanisms involved. We found a dose-dependent enhancement of TSH-induced TPO expression in response to LPS stimulation. EMSAs demonstrated that LPS treatment increased thyroid transcription factor-1 and -2 binding to the B and Z regions of TPO promoter, respectively. Moreover, LPS increased TSH-stimulated TPO promoter activity. Using bioinformatic analysis, we identified a conserved binding site for transcription nuclear factor-κB (NF-κB) in the TPO promoter. Chemical inhibition of NF-κB signaling and site-directed mutagenesis of the identified κB-cis-acting element abolished LPS stimulation. Furthermore, chromatin immunoprecipitation assays confirmed that TPO constitutes a novel NF-κB p65 subunit target gene in response to LPS. Additionally, our results indicate that p65 phosphorylation of serine 536 constitutes an essential step in the p65-dependent, LPS-induced transcriptional expression of TPO. In conclusion, here we demonstrated that LPS increases TPO expression, suggesting a novel mechanism involved in the regulation of a major thyroid autoantigen. Our results provide new insights into the potential effects of infectious processes on thyroid homeostasis.


Steroids | 2012

Dexamethasone counteracts the immunostimulatory effects of triiodothyronine (T3) on dendritic cells

María del Mar Montesinos; Vanina A. Alamino; Iván D. Mascanfroni; Sebastián Susperreguy; Nicolás Gigena; Ana M. Masini-Repiso; Gabriel A. Rabinovich; Claudia Gabriela Pellizas

Glucocorticoids (GCs) are widely used as anti-inflammatory and immunosuppressive agents. Several studies have indicated the important role of dendritic cells (DCs), highly specialized antigen-presenting and immunomodulatory cells, in GC-mediated suppression of adaptive immune responses. Recently, we demonstrated that triiodothyronine (T3) has potent immunostimulatory effects on bone marrow-derived mouse DCs through a mechanism involving T3 binding to cytosolic thyroid hormone receptor (TR) β1, rapid and sustained Akt activation and IL-12 production. Here we explored the impact of GCs on T3-mediated DC maturation and function and the intracellular events underlying these effects. Dexamethasone (Dex), a synthetic GC, potently inhibited T3-induced stimulation of DCs by preventing the augmented expression of maturation markers and the enhanced IL-12 secretion through mechanisms involving the GC receptor. These effects were accompanied by increased IL-10 levels following exposure of T3-conditioned DCs to Dex. Accordingly, Dex inhibited the immunostimulatory capacity of T3-matured DCs on naive T-cell proliferation and IFN-γ production while increased IL-10 synthesis by allogeneic T cell cultures. A mechanistic analysis revealed the ability of Dex to dampen T3 responses through modulation of Akt phosphorylation and cytoplasmic-nuclear shuttling of nuclear factor-κB (NF-κB). In addition, Dex decreased TRβ1 expression in both immature and T3-maturated DCs through mechanisms involving the GC receptor. Thus GCs, which are increased during the resolution of inflammatory responses, counteract the immunostimulatory effects of T3 on DCs and their ability to polarize adaptive immune responses toward a T helper (Th)-1-type through mechanisms involving, at least in part, NF-κB- and TRβ1-dependent pathways. Our data provide an alternative mechanism for the anti-inflammatory effects of GCs with critical implications in immunopathology at the cross-roads of the immune-endocrine circuits.


Cancer Research | 2015

Antitumor Responses Stimulated by Dendritic Cells Are Improved by Triiodothyronine Binding to the Thyroid Hormone Receptor β

Vanina A. Alamino; Iván D. Mascanfroni; María del Mar Montesinos; Nicolás Gigena; Ana Carolina Donadio; Ada G. Blidner; Sonia I. Milotich; Sheue-yann Cheng; Ana M. Masini-Repiso; Gabriel A. Rabinovich; Claudia Gabriela Pellizas

Bidirectional cross-talk between the neuroendocrine and immune systems orchestrates immune responses in both physiologic and pathologic settings. In this study, we provide in vivo evidence of a critical role for the thyroid hormone triiodothyronine (T3) in controlling the maturation and antitumor functions of dendritic cells (DC). We used a thyroid hormone receptor (TR) β mutant mouse (TRβPV) to establish the relevance of the T3-TRβ system in vivo. In this model, TRβ signaling endowed DCs with the ability to stimulate antigen-specific cytotoxic T-cell responses during tumor development. T3 binding to TRβ increased DC viability and augmented DC migration to lymph nodes. Moreover, T3 stimulated the ability of DCs to cross-present antigens and to stimulate cytotoxic T-cell responses. In a B16-OVA mouse model of melanoma, vaccination with T3-stimulated DCs inhibited tumor growth and prolonged host survival, in part by promoting the generation of IFNγ-producing CD8(+) T cells. Overall, our results establish an adjuvant effect of T3-TRβ signaling in DCs, suggesting an immediately translatable method to empower DC vaccination approaches for cancer immunotherapy.


Endocrinology | 2015

S-Nitrosylation of NF-κB p65 Inhibits TSH-Induced Na+/I− Symporter Expression

Juan Pablo Nicola; Victoria Peyret; Magalí Nazar; Jorge M. Romero; Ariel Maximiliano Lucero; María del Mar Montesinos; José Luis Bocco; Claudia Gabriela Pellizas; Ana M. Masini-Repiso

Nitric oxide (NO) is a ubiquitous signaling molecule involved in a wide variety of cellular physiological processes. In thyroid cells, NO-synthase III-endogenously produced NO reduces TSH-stimulated thyroid-specific gene expression, suggesting a potential autocrine role of NO in modulating thyroid function. Further studies indicate that NO induces thyroid dedifferentiation, because NO donors repress TSH-stimulated iodide (I(-)) uptake. Here, we investigated the molecular mechanism underlying the NO-inhibited Na(+)/I(-) symporter (NIS)-mediated I(-) uptake in thyroid cells. We showed that NO donors reduce I(-) uptake in a concentration-dependent manner, which correlates with decreased NIS protein expression. NO-reduced I(-) uptake results from transcriptional repression of NIS gene rather than posttranslational modifications reducing functional NIS expression at the plasma membrane. We observed that NO donors repress TSH-induced NIS gene expression by reducing the transcriptional activity of the nuclear factor-κB subunit p65. NO-promoted p65 S-nitrosylation reduces p65-mediated transactivation of the NIS promoter in response to TSH stimulation. Overall, our data are consistent with the notion that NO plays a role as an inhibitory signal to counterbalance TSH-stimulated nuclear factor-κB activation, thus modulating thyroid hormone biosynthesis.

Collaboration


Dive into the Ana M. Masini-Repiso's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Pablo Nicola

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Aldo H. Coleoni

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana M. Cabanillas

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Magalí Nazar

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iván D. Mascanfroni

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

María Laura Vélez

National University of Cordoba

View shared research outputs
Researchain Logo
Decentralizing Knowledge