Ana María Cevallos
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana María Cevallos.
Fems Microbiology Reviews | 2010
Ana Lilia Torres-Machorro; Roberto Hernández; Ana María Cevallos; Imelda López-Villaseñor
The study of genomic organization and regulatory elements of rRNA genes in metazoan paradigmatic organisms has led to the most accepted model of rRNA gene organization in eukaryotes. Nevertheless, the rRNA genes of microbial eukaryotes have also been studied in considerable detail and their atypical structures have been considered as exceptions. However, it is likely that these organisms have preserved variations in the organization of a versatile gene that may be seen as living records of evolution. Here, we review the organization of the main rRNA transcription unit (rDNA) and the 5S rRNA genes (5S rDNA). These genes are reiterated in the genome of microbial eukaryotes and may be coded alone, in tandem repeats, linked to each other or linked to other genes. They may be found in the chromosome or extrachromosomally in linear or circular units. rDNA coding regions may contain introns, sequence insertions, protein-coding genes or additional spacers. The 5S rDNA can be found in tandem repeats or genetically linked to genes transcribed by RNA polymerases I, II or III. Available information from about a hundred microbial eukaryotes was used to review the unexpected diversity in the genomic organization of rRNA genes.
BioMed Research International | 2014
Ana María Cevallos; Roberto Hernández
Chagas disease is a chronic infection that kills approximately 12,000 people a year. Mass migration of chronically infected and asymptomatic persons has caused globalization of Chagas disease and has made nonvectorial infection, including vertical and blood-borne transmission, more of a threat to human communities than vectorial infection. To control transmission, it is essential to test all pregnant women living in endemic countries and all pregnant women having migrated from, or having lived in, endemic countries. All children born to seropositive mothers should be tested not only within the first month of life but also at ~6 months and ~12 months of age. The diagnosis is made by identification of the parasite in blood before the age of 6 months and by identification of the parasite in blood and/or positive serology after 10 months of age. Follow up for a year is essential as a significant proportion of cases are initially negative and are only detected at a later stage. If the condition is diagnosed and treated early, the clinical response is excellent and the majority of cases are cured.
Experimental Parasitology | 2011
Ana María Cevallos; Yayoi Segura-Kato; Horacio Merchant-Larios; Rebeca Manning-Cela; Luis Alberto Hernández-Osorio; Claudia Márquez-Dueñas; Javier R. Ambrosio; Olivia Reynoso-Ducoing; Roberto Hernández
The expression and biological role of actin during the Trypanosoma cruzi life cycle remains largely unknown. Polyclonal antibodies against a recombinant T. cruzi actin protein were used to confirm its expression in epimastigotes, trypomastigotes, and amastigotes. Although the overall levels of expression were similar, clear differences in the subcellular distribution of actin among the developmental stages were identified. The existence of five actin variants in each developmental stage with distinct patterns of expression were uncovered by immunoblotting of protein extracts separated 2D-SDS gels. The isoelectric points of the actin variants in epimastigotes ranged from 4.45 to 4.9, whereas they ranged from 4.9 to 5.24 in trypomastigotes and amastigotes. To determine if the actin variants found could represent previously unidentified actins, we performed a genomic survey of the T.cruzi GeneDB database and found 12 independent loci encoding for a diverse group of actins and actin-like proteins that are conserved among trypanosomatids.
Parasitology Research | 2012
Roberto Hernández; Ana María Cevallos; Tomás Nepomuceno-Mejía; Imelda López-Villaseñor
Trypanosoma cruzi is a species of parasitic protozoa that causes American trypanosomiasis or Chagas disease. These parasites go through a complex life cycle in Triatominae insects and vertebrate hosts. Epimastigotes are replicative forms that colonize the digestive tract of the vector and can be cultured in axenic media. The growth curve of epimastigotes allows assessment of differences in cells undergoing growth rate transitions from an exponential growth to a stationary phase. Since the classical descriptions of T. cruzi, it has been noted that the growth curve of epimastigotes in culture can give rise, in the stationary phase, to nonreplicating forms of metacyclic trypomastigotes. Metacyclogenesis therefore regards to the development process by which epimastigote transform into infective metacyclic trypomastigotes. In nature, these metacyclic forms allow the spread of Chagas disease when transmitted from an infected vector to a vertebrate host. This work reviews cellular phenomena that occur during the growth rate transitions of epimastigotes in culture, which may be related to very early physiological conditions for metacyclogenesis. Many of these events have not been thoroughly investigated. Their analysis can stimulate new hypotheses and future research in an important area not fully exploited.
Fems Microbiology Letters | 2010
Tomás Nepomuceno-Mejía; Reyna Lara-Martínez; Ana María Cevallos; Imelda López-Villaseñor; Luis Felipe Jiménez-García; Roberto Hernández
Our group is interested in rRNA and ribosome biogenesis in the parasitic protozoan Trypanosoma cruzi. Epimastigotes represent an extracellular replicative stage of T. cruzi and can be cultured in axenic media. The growth curve of epimastigotes allows assessment of potential differences in the nucleoli of cells undergoing growth-rate transitions. To establish cellular parameters for studying ribosome biogenesis in T. cruzi, a morphometric analysis of the nucleoli of cultured cells in the exponential and stationary phases was conducted. Electron micrograph-based measurements of nuclear sections from independent cells demonstrated that the nucleolar area is over twofold higher in exponentially growing cells, as compared with epimastigotes in the stationary phase. The granular component of the nucleoli of actively growing cells was the main structural element. Cycloheximide moderately reduced the apparent size of the nucleoli without an apparent disruption of their architecture. Our results provide a firm basis for the establishment of an experimental model to study the organization of the nucleolus during the growth and development of T. cruzi.
Parasitology Research | 2014
Roberto Hernández; Ana María Cevallos
Leishmania major, Trypanosoma cruzi and Trypanosoma brucei are pathogenic species from the order Kinetoplastida. The molecular and cellular studies of parasites, such as of the biosynthesis of essential macromolecules, are important in designing successful strategies for control. A major stage in ribosome biogenesis is the transcription of genes encoding ribosomal (r)RNA. These genes are transcribed in trypanosome cells by RNA polymerase I, similar to what occurs in all eukaryotes analysed to date. In addition, and most remarkably, the African species, T. brucei, transcribe their major cell surface protein genes using this class of polymerase. Since its discovery, the research interest in this phenomenon has been overwhelming; therefore, analysis of the canonical, yet essential, transcription of rRNA has been comparatively neglected. In this work, a review of rRNA gene transcription and data on gene promoter structures, transcription machineries and epigenetic conditions is presented for trypanosomatids. Because species-specific molecules represent potential targets for chemotherapy, their existence within trypanosomes is highlighted.
Eukaryotic Cell | 2015
Norma E. Padilla-Mejía; Luis E. Florencio-Martínez; Rodrigo Moreno-Campos; Juan C. Vizuet-de-Rueda; Ana María Cevallos; Rosaura Hernández-Rivas; Rebeca Manning-Cela; Santiago Martínez-Calvillo
ABSTRACT Eukaryotic tRNAs, transcribed by RNA polymerase III (Pol III), contain boxes A and B as internal promoter elements. One exception is the selenocysteine (Sec) tRNA (tRNA-Sec), whose transcription is directed by an internal box B and three extragenic sequences in vertebrates. Here we report on the transcriptional analysis of the tRNA-Sec gene in the protozoan parasite Leishmania major. This organism has unusual mechanisms of gene expression, including Pol II polycistronic transcription and maturation of mRNAs by trans splicing, a process that attaches a 39-nucleotide miniexon to the 5′ end of all the mRNAs. In L. major, tRNA-Sec is encoded by a single gene inserted into a Pol II polycistronic unit, in contrast to most tRNAs, which are clustered at the boundaries of polycistronic units. 5′ rapid amplification of cDNA ends and reverse transcription-PCR experiments showed that some tRNA-Sec transcripts contain the miniexon at the 5′ end and a poly(A) tail at the 3′ end, indicating that the tRNA-Sec gene is polycistronically transcribed by Pol II and processed by trans splicing and polyadenylation, as was recently reported for the tRNA-Sec genes in the related parasite Trypanosoma brucei. However, nuclear run-on assays with RNA polymerase inhibitors and with cells that were previously UV irradiated showed that the tRNA-Sec gene in L. major is also transcribed by Pol III. Thus, our results indicate that RNA polymerase specificity in Leishmania is not absolute in vivo, as has recently been found in other eukaryotes.
Memorias Do Instituto Oswaldo Cruz | 2007
Mariana Pérez-Escobar; Ana María Cevallos; Bertha Espinoza; Norma Espinosa; Ignacio Díaz Martínez; Roberto Hernández
Two allelic genomic fragments containing ribosomal protein S4 encoding genes (rpS4) from Trypanosoma cruzi (CL-Brener strain) were isolated and characterized. One allele comprises two complete tandem repeats of a sequence encoding an rpS4 gene. In the other, only one rpS4 gene is found. Sequence comparison to the accessed data in the genome project database reveals that our two-copy allele corresponds to a variant haplotype. However, the deduced aminoacid sequence of all the gene copies is identical. The rpS4 transcripts processing sites were determined by comparison of genomic sequences with published cDNA data. The obtained sequence data demonstrates that rpS4 genes are expressed in epimastigotes, amastigotes, and trypomastigotes. A recombinant version of rpS4 was found to be an antigenic: it was recognized by 62.5% of the individuals with positive serology for T. cruzi and by 93.3% of patients with proven chronic chagasic disease.
Parasitology Research | 2018
Israel Canela-Pérez; Imelda López-Villaseñor; Ana María Cevallos; Roberto Hernández
Trypanosoma cruzi is the aetiologic agent of Chagas disease. Our research group studies ribosomal RNA (rRNA) gene transcription and nucleolus dynamics in this species of trypanosomes. RPA31 is an essential subunit of RNA polymerase I (Pol I) whose presence is apparently restricted to trypanosomes. Using fluorescent-tagged versions of this protein (TcRPA31-EGFP), we describe its nuclear distribution during growth and metacyclogenesis. Our findings indicate that TcRPA31-EGFP alters its nuclear presence from concentrated nucleolar localization in exponentially growing epimastigotes to a dispersed granular distribution in the nucleoplasm of stationary epimastigotes and metacyclic trypomastigotes. These changes likely reflect a structural redistribution of the Pol I transcription machinery in quiescent cellular stages where downregulation of rRNA synthesis is known to occur. In addition, and related to the nuclear internalization of this protein, the presence of a classical bipartite-type nuclear localization signal was identified towards its C-terminal end. The functionality of this motif was demonstrated by its partial or total deletion in recombinant versions of the tagged fluorescent protein. Moreover, ivermectin inhibited the nuclear localization of the labelled chimaera, suggesting the involvement of the importin α/β transport system.
Korean Journal of Parasitology | 2017
Ana María Cevallos; Juliana Herrera; Imelda López-Villaseñor; Roberto Hernández
Trypanosoma cruzi is the etiological agent of Chagas disease. Epimastigote forms of T. cruzi can be readily cultured in axenic conditions. Ethanol and dimethyl sulfoxide (DMSO) are commonly used solvents employed as vehicles for hydrophobic compounds. In order to produce a reference plot of solvent dependent growth inhibition for T. cruzi research, the growth of epimastigotes was analyzed in the presence of different concentrations of ethanol (0.1–4.0%) and DMSO (0.5–7.5%). The ability of the parasites to resume growth after removal of these solvents was also examined. As expected, both ethanol and DMSO produced a dose-dependent inhibition of cellular growth. Parasites could recover normal growth after 9 days in up to 2% ethanol or 5% DMSO. Since DMSO was better tolerated than ethanol, it is thus recommended to prefer DMSO over ethanol in the case of a similar solubility of a given compound.