Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana María Quintela is active.

Publication


Featured researches published by Ana María Quintela.


Clinical Science | 2005

Methylglyoxal administration induces diabetes-like microvascular changes and perturbs the healing process of cutaneous wounds.

Jorge Berlanga; Danay Cibrián; Isabel Guillén; Freya Freyre; José Suárez Alba; Pedro Lopez-Saura; Nelson Merino; Alfredo Aldama; Ana María Quintela; María Eugenia Triana; Jose F. Montequin; Hussam Ajamieh; Dioslaida Urquiza; Naila Ahmed; Paul J. Thornalley

Increased formation of MG (methylglyoxal) and related protein glycation in diabetes has been linked to the development of diabetic vascular complications. Diabetes is also associated with impaired wound healing. In the present study, we investigated if prolonged exposure of rats to MG (50-75 mg/kg of body weight) induced impairment of wound healing and diabetes-like vascular damage. MG treatment arrested growth, increased serum creatinine, induced hypercholesterolaemia (all P < 0.05) and impaired vasodilation (P < 0.01) compared with saline controls. Degenerative changes in cutaneous microvessels with loss of endothelial cells, basement membrane thickening and luminal occlusion were also detected. Acute granulation appeared immature (P < 0.01) and was associated with an impaired infiltration of regenerative cells with reduced proliferative rates (P < 0.01). Immunohistochemical staining indicated the presence of AGEs (advanced glycation end-products) in vascular structures, cutaneous tissue and peripheral nerve fibres. Expression of RAGE (receptor for AGEs) appeared to be increased in the cutaneous vasculature. There were also pro-inflammatory and profibrotic responses, including increased IL-1beta (interleukin-1beta) expression in intact epidermis, TNF-alpha (tumour necrosis factor-alpha) in regions of angiogenesis, CTGF (connective tissue growth factor) in medial layers of arteries, and TGF-beta (transforming growth factor-beta) in glomerular tufts, tubular epithelial cells and interstitial endothelial cells. We conclude that exposure to increased MG in vivo is associated with the onset of microvascular damage and other diabetes-like complications within a normoglycaemic context.


Free Radical Biology and Medicine | 2012

Epicatechin lowers blood pressure, restores endothelial function, and decreases oxidative stress and endothelin-1 and NADPH oxidase activity in DOCA-salt hypertension.

Manuel Gómez-Guzmán; Rosario Jiménez; Manuel Castro Sánchez; María José Zarzuelo; Pilar Galindo; Ana María Quintela; Rocío López-Sepúlveda; Miguel Romero; Juan Tamargo; Félix Vargas; Francisco Perez-Vizcaino; Juan Duarte

Flavanol-rich diets have been reported to exert beneficial effects in preventing cardiovascular diseases, such as hypertension. We studied the effects of chronic treatment with epicatechin on blood pressure, endothelial function, and oxidative status in deoxycorticosterone acetate (DOCA)-salt-induced hypertension. Rats were treated for 5 weeks with (-)-epicatechin at 2 or 10 mg kg(-1)day(-1). The high dose of epicatechin prevented both the increase in systolic blood pressure and the proteinuria induced by DOCA-salt. Plasma endothelin-1 and malondialdehyde levels and urinary iso-prostaglandin F(2α) excretion were increased in animals of the DOCA-salt group and reduced by the epicatechin 10 mg kg(-1) treatment. Aortic superoxide levels were enhanced in the DOCA-salt group and abolished by both doses of epicatechin. However, only epicatechin at 10 mg kg(-1) reduced the rise in aortic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and p47(phox) and p22(phox) gene overexpression found in DOCA-salt animals. Epicatechin increased the transcription of nuclear factor-E2-related factor-2 (Nrf2) and Nrf2 target genes in aortas from control rats. Epicatechin also improved the impaired endothelium-dependent relaxation response to acetylcholine and increased the phosphorylation of both Akt and eNOS in aortic rings. In conclusion, epicatechin prevents hypertension, proteinuria, and vascular dysfunction. Epicatechin also induced a reduction in ET-1 release, systemic and vascular oxidative stress, and inhibition of NADPH oxidase activity.


Hypertension | 2011

Antihypertensive Effects of Peroxisome Proliferator-Activated Receptor-β Activation in Spontaneously Hypertensive Rats

María José Zarzuelo; Rosario Jiménez; Pilar Galindo; Manuel Castro Sánchez; Ana Nieto; Miguel Romero; Ana María Quintela; Rocío López-Sepúlveda; Manuel Gómez-Guzmán; Elvira Bailón; Isabel Rodríguez-Gómez; Antonio Zarzuelo; Julio Gálvez; Juan Tamargo; Francisco Perez-Vizcaino; Juan Duarte

Activation of nuclear hormone receptor peroxisome proliferator-activated receptor &bgr;/&dgr; (PPAR&bgr;) has been shown to improve insulin resistance and plasma high-density lipoprotein levels, but nothing is known about its effects in genetic hypertension. We studied whether the PPAR&bgr; agonist GW0742 might exert antihypertensive effects in spontaneously hypertensive rats (SHRs). The rats were divided into 4 groups, Wistar Kyoto rat-control, Wistar Kyoto rat-treated (GW0742, 5 mg · kg−1 · day−1 by oral gavage), SHR-control, and SHR-treated, and followed for 5 weeks. GW0742 induced a progressive reduction in systolic arterial blood pressure and heart rate in SHRs and reduced the mesenteric arterial remodeling, the increased aortic vasoconstriction to angiotensin II, and the endothelial dysfunction characteristic of SHRs. These effects were accompanied by a significant increase in endothelial NO synthase activity attributed to upregulated endothelial NO synthase and downregulated caveolin 1 protein expression. Moreover, GW0742 inhibited vascular superoxide production, downregulated p22phox and p47phox proteins, decreased both basal and angiotensin II–stimulated NADPH oxidase activity, inhibited extracellular-regulated kinase 1/2 activation, and reduced the expression of the proinflammatory and proatherogenic genes, interleukin 1&bgr;, interleukin 6, or intercellular adhesion molecule 1. None of these effects were observed in Wistar Kyoto rats. PPAR&bgr; activation, both in vitro and in vivo, increased the expression of the regulators of G protein–coupled signaling proteins RGS4 and RGS5, which negatively modulated the vascular actions of angiotensin II. PPAR&bgr; activation exerted antihypertensive effects, restored the vascular structure and function, and reduced the oxidative, proinflammatory, and proatherogenic status of SHRs. We propose PPAR&bgr; as a new therapeutic target in hypertension.


Free Radical Biology and Medicine | 2012

Activation of peroxisome proliferator-activated receptor-β/-δ (PPARβ/δ) prevents endothelial dysfunction in type 1 diabetic rats.

Ana María Quintela; Rosario Jiménez; Manuel Gómez-Guzmán; María José Zarzuelo; Pilar Galindo; Manuel Castro Sánchez; Félix Vargas; Angel Cogolludo; Juan Tamargo; Francisco Perez-Vizcaino; Juan Duarte

Endothelial dysfunction plays a key role in the pathogenesis of diabetic vascular disease. Herein, we have analyzed if the peroxisome proliferator-activated receptor-β/-δ (PPARβ/δ) agonist GW0742 exerts protective effects on endothelial function in type 1 diabetic rats. The rats were divided into 4 groups: control, control-treated (GW0742, 5 mg kg(-1)day(-1) for 5 weeks), diabetic (streptozotocin injection), and diabetic-treated. GW0742 administration in diabetic rats did not alter plasma glucose, systolic blood pressure, or heart rate, but reduced plasma triglyceride levels. The vasodilatation induced by acetylcholine was decreased in aortas from diabetic rats. GW0742 restored endothelial function, increasing eNOS phosphorylation. Superoxide production, NADPH oxidase activity, and mRNA expression of prepro endothelin-1, p22(phox), p47(phox), and NOX-1 were significantly higher in diabetic aortas, and GW0742 treatment prevented these changes. In addition, GW0742 prevented the endothelial dysfunction and the upregulation of prepro endothelin-1 and p47(phox) after the in vitro incubation of aortic rings with high glucose and these effects were prevented by the PPARβ/δ antagonist GSK0660. PPARβ/δ activation restores endothelial function in type 1 diabetic rats. This effect seems to be related to an increase in nitric oxide bioavailability as a result of reduced NADPH oxidase-driven superoxide production and downregulation of prepro endothelin-1.


Journal of Pharmacology and Experimental Therapeutics | 2010

Endothelium-Dependent Vasodilator Effects of Peroxisome Proliferator-Activated Receptor β Agonists via the Phosphatidyl-Inositol-3 Kinase-Akt Pathway

Rosario Jiménez; Manuel Castro Sánchez; María José Zarzuelo; Miguel Romero; Ana María Quintela; Rocío López-Sepúlveda; Pilar Galindo; Manuel Gómez-Guzmán; Jose Manuel Haro; Antonio Zarzuelo; Francisco Perez-Vizcaino; Juan Duarte

Peroxisome proliferator-activated receptor β/δ (PPAR-β) is a ligand-activated transcription factor belonging to the nuclear hormone receptor superfamily that regulates the transcription of many target genes. More recently, acute, nongenomic effects of PPAR-β agonists have also been described. In the present study, we hypothesized that PPAR-β agonists might exert acute nongenomic effects on vascular tone. Here, we report that the structurally unrelated PPAR-β ligands [4-[3-(4-acetyl-3-hydroxy-2-propylphenoxy)propoxy]phenoxy]acetic acid (L-165041) and 4-[[[2-[3-fluoro-4-(trifluoromethyl)phenyl]-4-methyl-5-thiazolyl] methyl]thio]-2-methylphenoxy]acetic acid (GW0742) induced vascular relaxation in phenylephrine-precontracted endothelium-intact rat aortic rings, which was significantly inhibited by endothelial denudation or nitric-oxide synthase (NOS) inhibition with NG-nitro-l-arginine methylester. These relaxant effects reached steady state within 15 min. The relaxation induced by L-165041 and GW0742 in aortic rings precontracted with the thromboxane A2 analog 9,11-dideoxy-11α,9α-epoxymethanoprostaglandin F2α (U-46619) was unaffected either by removal of extracellular calcium or by incubation with calcium-free solution containing the intracellular calcium chelator 1,2-bis-(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetra(acetoxymethyl) ester. However, the phosphatidylinositol 3-kinase (PI3K) inhibitor 2-(4-morpholinyl)-8-phenyl-1(4H)-benzopyran-4-one hydrochloride (LY-294002) inhibited the endothelium-dependent relaxant responses induced by both PPAR-β agonists. Blockade of PPAR-β with 3-[[[2-methoxy-4-(phenylamino)phenyl]amino]sulfonyl]-2-thiophenecarboxylic acid methyl ester (GSK0660) also partially inhibited these relaxant responses, although PPAR-γ blockade with 2-chloro-5-nitro-N-phenylbenzamide (GW9662) had no effect. In human umbilical vein endothelial cells, L-165041 and GW0742 increased nitric oxide (NO) production and Akt and endothelial NOS (eNOS) phosphorylation, which were sensitive to PI3K inhibition and PPAR-β blockade. In conclusion, the PPAR-β agonists acutely caused vasodilatation, which was partially dependent on endothelial-derived NO. The eNOS activation is calcium-independent and seems to be related to activation of the PI3K-Akt-eNOS pathway.


Clinical Science | 2011

Red wine polyphenols prevent endothelial dysfunction induced by endothelin-1 in rat aorta: role of NADPH oxidase

Rocío López-Sepúlveda; Manuel Gómez-Guzmán; María José Zarzuelo; Miguel Romero; Manuel Castro Sánchez; Ana María Quintela; Pilar Galindo; Francisco O'Valle; Juan Tamargo; Francisco Perez-Vizcaino; Juan Duarte; Rosario Jiménez

RWPs (red wine polyphenols) exert antihypertensive effects and improve endothelial function by reducing the plasma levels of ET-1 (endothelin-1) and the subsequent vascular production of O(2)(•-) (superoxide anion). Our present study was designed to evaluate whether RWPs act directly in the vascular wall improving endothelial dysfunction and O(2)(•-) production induced by ET-1 and to analyse the compounds responsible for these protective effects. We incubated rat isolated aortic rings in the presence or absence of ET-1 (10 nM) and RWPs (10(-4) to 10(-2) g/l) or catechin (0.2 μM), epicatechin (10 μM) and resveratrol (0.1 μM). ET-1 reduced the relaxant responses to acetylcholine, increased intracellular O(2)(•-) production, NADPH oxidase activity and protein expression of NADPH oxidase subunit p47phox. All these changes were prevented by RWPs. The preventive effects of RWPs were unaffected by co-incubation with either ICI-182780, an ER (oestrogen receptor) antagonist, or GW9662, a PPARγ (peroxisome-proliferator-activated receptor γ) antagonist. RWPs inhibited the phosphorylation of the mitogen-activated protein kinase, ERK1/2 (extracellular signal-regulated kinase 1/2), a key regulator of p47phox expression in response to ET-1. When the isolated polyphenols were tested, at the concentrations found in 10(-2) g/l RWPs, only epicatechin prevented endothelial dysfunction and all biochemical changes induced by ET-1 in the vascular wall. Taken together, these results indicate that RWPs prevent ET-1-induced vascular O(2)(•-) production by reducing overexpression of p47phox and the subsequent increased NADPH oxidase activity, leading to improvement in endothelial function. The effects of RWPs appear to be independent of ER and PPARγ activation and are related to ERK1/2 inhibition.


British Journal of Nutrition | 2011

Chronic ( − )-epicatechin improves vascular oxidative and inflammatory status but not hypertension in chronic nitric oxide-deficient rats

Manuel Gómez-Guzmán; Rosario Jiménez; Manuel Castro Sánchez; Miguel Romero; Francisco O'Valle; Rocío López-Sepúlveda; Ana María Quintela; Pilar Galindo; María José Zarzuelo; Elvira Bailón; Eva Delpón; Francisco Perez-Vizcaino; Juan Duarte

The present study analysed the effects of the flavanol (-)-epicatechin in rats after chronic inhibition of NO synthesis with NG-nitro-L-arginine methyl ester (L-NAME), at doses equivalent to those achieved in the studies involving human subjects. Wistar rats were randomly divided into four groups: (1) control-vehicle, (2) L-NAME, (3) L-NAME-epicatechin 2 (L-NAME-Epi 2) and (4) L-NAME-epicatechin 10 (L-NAME-Epi 10). Rats were daily given by oral administration for 4 weeks: vehicle, (-)-epicatechin 2 or 10 mg/kg. Animals in the L-NAME groups daily received L-NAME 75 mg/100 ml in drinking-water. The evolution in systolic blood pressure and heart rate, and morphological and plasma variables, proteinuria, vascular superoxide, reactivity and protein expression at the end of the experiment were analysed. Chronic (-)-epicatechin treatment did not modify the development of hypertension and only weakly affected the endothelial dysfunction induced by L-NAME but prevented the cardiac hypertrophy, the renal parenchyma and vascular lesions and proteinuria, and blunted the prostanoid-mediated enhanced endothelium-dependent vasoconstrictor responses and the cyclo-oxygenase-2 and endothelial NO synthase (eNOS) up-regulation. Furthermore, (-)-epicatechin also increased Akt and eNOS phosphorylation and prevented the L-NAME-induced increase in systemic (plasma malonyldialdehyde and urinary 8-iso-PGF2α) and vascular (dihydroethidium staining, NADPH oxidase activity and p22phox up-regulation) oxidative stress, proinflammatory status (intercellular adhesion molecule-1, IL-1β and TNFα up-regulation) and extracellular-signal-regulated kinase 1/2 phosphorylation. The present study shows for the first time that chronic oral administration of (-)-epicatechin does not improve hypertension but reduced pro-atherogenic pathways such as oxidative stress and proinflammatory status of the vascular wall induced by blockade of NO production.


Food & Function | 2012

Different cardiovascular protective effects of quercetin administered orally or intraperitoneally in spontaneously hypertensive rats

Pilar Galindo; Susana González-Manzano; María José Zarzuelo; Manuel Gómez-Guzmán; Ana María Quintela; Ana M. González-Paramás; Celestino Santos-Buelga; Francisco Perez-Vizcaino; Juan Duarte; Rosario Jiménez

We tested whether the administration procedure of quercetin affects its metabolite profile and antihypertensive activity. Spontaneously hypertensive rats (SHR) were randomly assigned to four experimental treatments: (1) 1 mL of 1% methylcellulose by oral gavage and 2% DMSO i.p. (control group); (2) 10 mg kg⁻¹ quercetin by oral gavage once daily and 2% DMSO i.p.; (3) 10 mg kg⁻¹ quercetin by oral gavage divided in two daily doses (5 + 5 at 12 h intervals) and 2% DMSO i.p.; (4) 1 mL of 1% methylcellulose by oral gavage and 10 mg kg⁻¹ quercetin i.p. injection. Rats were treated daily for 5 weeks. Single dose and two daily doses, in a long-term oral treatment were equally efficient, both restoring the impaired aortic endothelium-dependent vasodilatation and reducing mesenteric contractile response to phenylephrine, systolic blood pressure, heart rate, and heart and kidney hypertrophy. Attenuation of vascular NADPH oxidase-driven O₂⁻ production was also found in orally treated rats. Intraperitoneal administration reduced, to lesser extent than oral administration, the increased systolic blood pressure, being without effect to the endothelial dysfunction and vascular oxidative stress. In contrast, greater levels of metabolites were quantified following intraperitoneal compared to oral administration at any time point, except for higher plasma methylated quercetin aglycone in oral as compared to intraperitoneal administration at 2 but not at 8 h. In conclusion, oral quercetin was superior to intraperitoneal administration for the protection from cardiovascular complications in SHR. No differences were found between the oral administration as a single daily dose or divided into two daily doses.


Cardiovascular Research | 2013

Effects of peroxisome proliferator-activated receptor-β activation in endothelin-dependent hypertension

María José Zarzuelo; Manuel Gómez-Guzmán; Rosario Jiménez; Ana María Quintela; Miguel Romero; Manuel Castro Sánchez; Antonio Zarzuelo; Juan Tamargo; Francisco Perez-Vizcaino; Juan Duarte

AIMS We analysed the chronic effects of the peroxisome proliferator-activated receptor β/δ (PPAR-β) agonist GW0742 on the renin-independent hypertension induced by deoxycorticosterone acetate (DOCA)-salt. METHODS AND RESULTS Rats were treated for 5 weeks with: control-vehicle, control-GW0742 (5 or 20 mg kg(-1) day(-1)), DOCA-vehicle, DOCA-GW0742 (5 or 20 mg kg(-1) day(-1)), DOCA-GSK0660 (1 mg kg(-1) day(-1)), and DOCA-GSK0660-GW0742. Rats receiving DOCA-vehicle showed increased systolic blood pressure, left ventricular and kidney weight indices, endothelin-1 (ET-1), and malondialdehyde plasma levels, urinary iso-PGF2α excretion, impaired endothelium-dependent relaxation to acetylcholine, and contraction to ET-1 when compared with controls. Aortic reactive oxygen species content, NADPH oxidase activity, and p47(phox), p22(phox), NOX-4, glutathione peroxidase 1, hemeoxygenase-1, and preproET-1 expression were increased, whereas catalase and regulators of G protein-coupled signalling proteins (RGS)5 expression were decreased in the DOCA-vehicle group. GW0742 prevented the development of hypertension in a dose-dependent manner but the reduction of renal and cardiac hypertrophy, systemic and vascular oxidative stress markers, and improvement of endothelial dysfunction were only observed after the higher dose. GW0742, at 20 mg kg(-1) day(-1), attenuated ET-1 contraction by increasing RGS5 expression and restored the intracellular redox balance by reducing NADPH-oxidase activity, and by increasing the antioxidant genes expression. The PPAR-β antagonist GSK0660 prevented all vascular changes induced by GW0742 but not its antihypertensive effects. CONCLUSION Vascular protective effects of GW0742 operate via PPAR-β by interference with the ET-1 signalling as a result of increased expression of RGS5 and up-regulation of antioxidant genes and via PPAR-β-independent mechanisms to decrease blood pressure.


British Journal of Pharmacology | 2014

PPARβ activation restores the high glucose-induced impairment of insulin signalling in endothelial cells.

Ana María Quintela; Rosario Jiménez; Laura Piqueras; Manuel Gómez-Guzmán; J Haro; María José Zarzuelo; Angel Cogolludo; Maria-Jesus Sanz; Marta Toral; Miguel Romero; Francisco Perez-Vizcaino; Juan Duarte

PPARβ enhances insulin sensitivity in adipocytes and skeletal muscle cells, but its effects on insulin signalling in endothelial cells are not known. We analysed the effects of the PPARβ/δ (PPARβ) agonists, GW0742 and L165041, on impaired insulin signalling induced by high glucose in HUVECs and aortic and mesenteric arteries from diabetic rats.

Collaboration


Dive into the Ana María Quintela's collaboration.

Top Co-Authors

Avatar

Francisco Perez-Vizcaino

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Tamargo

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge