Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana P. G. Silva is active.

Publication


Featured researches published by Ana P. G. Silva.


Science | 2016

Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer’s mice

Arne Ittner; Sook Wern Chua; Josefine Bertz; Alexander Volkerling; Julia van der Hoven; Amadeus Gladbach; Magdalena Przybyla; Mian Bi; Annika van Hummel; Claire H. Stevens; Stefania Ippati; Lisa S. Suh; Alexander Macmillan; Greg T. Sutherland; Jillian J. Kril; Ana P. G. Silva; Joel P. Mackay; Anne Poljak; Fabien Delerue; Yazi D. Ke; Lars M. Ittner

Tau phosphorylation—not all bad Alzheimers disease presents with amyloid-β (Aβ) plaques and tau tangles. The prevailing idea in the field is that Aβ induces phosphorylation of tau, which in turn mediates neuronal dysfunction. Working in Alzheimers disease mouse models, Ittner et al. found evidence for a protective role of tau in early Alzheimers disease. This protection involves specific tau phosphorylation at threonine 205 at the postsynapse. A protective role of phosphorylated tau in disease challenges the dogma that tau phosphorylation only mediates toxic processes. Science, this issue p. 904 Phosphorylation of tau at a specific site mitigates, rather than enhances, symptoms in a mouse model of Alzheimer’s disease. Amyloid-β (Aβ) toxicity in Alzheimer’s disease (AD) is considered to be mediated by phosphorylated tau protein. In contrast, we found that, at least in early disease, site-specific phosphorylation of tau inhibited Aβ toxicity. This specific tau phosphorylation was mediated by the neuronal p38 mitogen-activated protein kinase p38γ and interfered with postsynaptic excitotoxic signaling complexes engaged by Aβ. Accordingly, depletion of p38γ exacerbated neuronal circuit aberrations, cognitive deficits, and premature lethality in a mouse model of AD, whereas increasing the activity of p38γ abolished these deficits. Furthermore, mimicking site-specific tau phosphorylation alleviated Aβ-induced neuronal death and offered protection from excitotoxicity. Our work provides insights into postsynaptic processes in AD pathogenesis and challenges a purely pathogenic role of tau phosphorylation in neuronal toxicity.


Journal of Biological Chemistry | 2014

Insight into the Architecture of the NuRD Complex STRUCTURE OF THE RbAp48-MTA1 SUBCOMPLEX

Saad AlQarni; Andal Murthy; Wei Zhang; Marcin R. Przewloka; Ana P. G. Silva; Aleksandra A. Watson; Sara Lejon; Xue Y. Pei; Arne H. Smits; Susan L Kloet; Hongxin Wang; Nicholas E. Shepherd; Philippa H. Stokes; Gerd A. Blobel; Michiel Vermeulen; David M. Glover; Joel P. Mackay; Ernest D. Laue

Background: The NuRD complex controls gene expression through altering chromatin structure. Results: The MTA1-RbAp48 structure shows how the RbAp46/p48 histone chaperones are recruited to NuRD. Conclusion: The MTA subunits act as scaffolds for NuRD complex assembly. Significance: The MTA/RbAp48 interaction prevents binding of histone H4, which is crucial for understanding the role of the RbAp46/p48 chaperones in the complex. The nucleosome remodeling and deacetylase (NuRD) complex is a widely conserved transcriptional co-regulator that harbors both nucleosome remodeling and histone deacetylase activities. It plays a critical role in the early stages of ES cell differentiation and the reprogramming of somatic to induced pluripotent stem cells. Abnormalities in several NuRD proteins are associated with cancer and aging. We have investigated the architecture of NuRD by determining the structure of a subcomplex comprising RbAp48 and MTA1. Surprisingly, RbAp48 recognizes MTA1 using the same site that it uses to bind histone H4, showing that assembly into NuRD modulates RbAp46/48 interactions with histones. Taken together with other results, our data show that the MTA proteins act as scaffolds for NuRD complex assembly. We further show that the RbAp48-MTA1 interaction is essential for the in vivo integration of RbAp46/48 into the NuRD complex.


Developmental Cell | 2014

Trim58 Degrades Dynein and Regulates Terminal Erythropoiesis

Christopher S. Thom; Elizabeth A. Traxler; Eugene Khandros; Jenna M. Nickas; Olivia Y. Zhou; Jacob E. Lazarus; Ana P. G. Silva; Dolly Prabhu; Yu Yao; Chiaka Aribeana; Serge Y. Fuchs; Joel P. Mackay; Erika L.F. Holzbaur; Mitchell J. Weiss

TRIM58 is an E3 ubiquitin ligase superfamily member implicated by genome-wide association studies to regulate human erythrocyte traits. Here, we show that Trim58 expression is induced during late erythropoiesis and that its depletion by small hairpin RNAs (shRNAs) inhibits the maturation of late-stage nucleated erythroblasts to anucleate reticulocytes. Imaging flow cytometry studies demonstrate that Trim58 regulates polarization and/or extrusion of erythroblast nuclei. In vitro, Trim58 directly binds and ubiquitinates the intermediate chain of the microtubule motor dynein. In cells, Trim58 stimulates proteasome-dependent degradation of the dynein holoprotein complex. During erythropoiesis, Trim58 expression, dynein loss, and enucleation occur concomitantly, and all are inhibited by Trim58 shRNAs. Dynein regulates nuclear positioning and microtubule organization, both of which undergo dramatic changes during erythroblast enucleation. Thus, we propose that Trim58 promotes this process by eliminating dynein. Our findings identify an erythroid-specific regulator of enucleation and elucidate a previously unrecognized mechanism for controlling dynein activity.


Journal of Medicinal Chemistry | 2012

Synthesis and evaluation of α-thymidine analogues as novel antimalarials.

Huaqing Cui; Juana Carrero-Lérida; Ana P. G. Silva; Jean L. Whittingham; James A. Brannigan; Luis M. Ruiz-Pérez; Kevin D. Read; Keith S. Wilson; Dolores González-Pacanowska; Ian H. Gilbert

Plasmodium falciparum thymidylate kinase (PfTMPK) is a key enzyme in pyrimidine nucleotide biosynthesis. 3-Trifluoromethyl-4-chloro-phenyl-urea-α-thymidine has been reported as an inhibitor of Mycobacterium tuberculosis TMPK (MtTMPK). Starting from this point, we designed, synthesized and evaluated a number of thymidine analogues as antimalarials. Both 5′-urea-α- and β-thymidine derivatives were moderate inhibitors of PfTMPK and furthermore showed moderate inhibition of parasite growth. The structure of several enzyme–inhibitor complexes provides a basis for improved inhibitor design. However, we found that certain 5′-urea-α-thymidine analogues had antimalarial activity where inhibition of PfTMPK is not the major mode of action. Optimization of this series resulted in a compound with potent antimalarial activity (EC50 = 28 nM; CC50 = 29 μM).


Journal of Biological Chemistry | 2016

The N-terminal Region of Chromodomain Helicase DNA-binding Protein 4 (CHD4) Is Essential for Activity and Contains a High Mobility Group (HMG) Box-like-domain That Can Bind Poly(ADP-ribose).

Ana P. G. Silva; Daniel P. Ryan; Yaron Galanty; Jason K. K. Low; Marylène Vandevenne; Joel P. Mackay

Chromodomain Helicase DNA-binding protein 4 (CHD4) is a chromatin-remodeling enzyme that has been reported to regulate DNA-damage responses through its N-terminal region in a poly(ADP-ribose) polymerase-dependent manner. We have identified and determined the structure of a stable domain (CHD4-N) in this N-terminal region. The-fold consists of a four-α-helix bundle with structural similarity to the high mobility group box, a domain that is well known as a DNA binding module. We show that the CHD4-N domain binds with higher affinity to poly(ADP-ribose) than to DNA. We also show that the N-terminal region of CHD4, although not CHD4-N alone, is essential for full nucleosome remodeling activity and is important for localizing CHD4 to sites of DNA damage. Overall, these data build on our understanding of how CHD4-NuRD acts to regulate gene expression and participates in the DNA-damage response.


Structure | 2011

Structure and Activity of a Novel Archaeal β-CASP Protein with N-Terminal KH Domains

Ana P. G. Silva; Maria Chechik; Robert T. Byrne; David G. Waterman; C. Leong Ng; Eleanor J. Dodson; Eugene V. Koonin; Alfred A. Antson; Callum Smits

Summary MTH1203, a β-CASP metallo-β-lactamase family nuclease from the archaeon Methanothermobacter thermautotrophicus, was identified as a putative nuclease that might contribute to RNA processing. The crystal structure of MTH1203 reveals that, in addition to the metallo-β-lactamase nuclease and the β-CASP domains, it contains two contiguous KH domains that are unique to MTH1203 and its orthologs. RNA-binding experiments indicate that MTH1203 preferentially binds U-rich sequences with a dissociation constant in the micromolar range. In vitro nuclease activity assays demonstrated that MTH1203 is a zinc-dependent nuclease. MTH1203 is also shown to be a dimer and, significantly, this dimerization enhances the nuclease activity. Transcription termination in archaea produces mRNA transcripts with U-rich 3′ ends that could be degraded by MTH1203 considering its RNA-binding specificity. We hypothesize that this nuclease degrades mRNAs of proteins targeted for degradation and so regulates archaeal RNA turnover, possibly in concert with the exosome.


Journal of Biological Chemistry | 2016

CHD4 Is a Peripheral Component of the Nucleosome Remodeling and Deacetylase Complex.

Jason K. K. Low; Sarah R. Webb; Ana P. G. Silva; Hinnerk Saathoff; Daniel P. Ryan; Mario Torrado; Mattias Brofelth; Benjamin L. Parker; Nicholas E. Shepherd; Joel P. Mackay

Chromatin remodeling enzymes act to dynamically regulate gene accessibility. In many cases, these enzymes function as large multicomponent complexes that in general comprise a central ATP-dependent Snf2 family helicase that is decorated with a variable number of regulatory subunits. The nucleosome remodeling and deacetylase (NuRD) complex, which is essential for normal development in higher organisms, is one such macromolecular machine. The NuRD complex comprises ∼10 subunits, including the histone deacetylases 1 and 2 (HDAC1 and HDAC2), and is defined by the presence of a CHD family remodeling enzyme, most commonly CHD4 (chromodomain helicase DNA-binding protein 4). The existing paradigm holds that CHD4 acts as the central hub upon which the complex is built. We show here that this paradigm does not, in fact, hold and that CHD4 is a peripheral component of the NuRD complex. A complex lacking CHD4 that has HDAC activity can exist as a stable species. The addition of recombinant CHD4 to this nucleosome deacetylase complex reconstitutes a NuRD complex with nucleosome remodeling activity. These data contribute to our understanding of the architecture of the NuRD complex.


Future Medicinal Chemistry | 2010

New strategies in fighting TB: targeting Mycobacterium tuberculosis-secreted phosphatases MptpA & MptpB.

Ana P. G. Silva; Lydia Tabernero

Mycobacterium tuberculosis is the most successful human pathogen due to its ability to challenge the innate immune system and survive in the infected host for a lifetime. Although tuberculosis (TB) is a curable disease, severe multidrug resistance to traditional antibiotics has caused a resurgence of the infection worldwide. The secreted phosphatases MptpA and MptpB are key virulence factors that play important roles in survival of M. tuberculosis during macrophage infection. These enzymes are therefore attractive alternative targets for chemotherapy. In this review we analyze the structural features that characterize these two phosphatases and differentiate them from human homologs. Their structural peculiarities are important for drug-design considerations and the future development of selective inhibitors. We describe the recent efforts in developing specific, selective and cell-active inhibitors of MptpA and MptpB, and discuss their potential applications as alternative treatments of TB.


Journal of Molecular Biology | 2016

The Chromatin Remodelling Protein CHD1 Contains a Previously Unrecognised C-Terminal Helical Domain.

Biswaranjan Mohanty; Stephanie Helder; Ana P. G. Silva; Joel P. Mackay; Daniel P. Ryan

The packaging of eukaryotic DNA into nucleosomes, and the organisation of these nucleosomes into chromatin, plays a critical role in regulating all DNA-associated processes. Chromodomain helicase DNA-binding protein 1 (CHD1) is an ATP-dependent chromatin remodelling protein that is conserved throughout eukaryotes and has an ability to assemble and organise nucleosomes both in vitro and in vivo. This activity is involved in the regulation of transcription and is implicated in mammalian development and stem cell biology. CHD1 is classically depicted as possessing a pair of tandem chromodomains that directly precede a core catalytic helicase-like domain that is then followed by a SANT-SLIDE DNA-binding domain. Here, we have identified an additional conserved domain C-terminal to the SANT-SLIDE domain and determined its structure by multidimensional heteronuclear NMR spectroscopy. We have termed this domain the CHD1 helical C-terminal (CHCT) domain as it is comprised of five α-helices arranged in a variant helical bundle topology. CHCT has a conserved, positively charged surface and is able to bind DNA and nucleosomes. In addition, we have identified another group of proteins, the as yet uncharacterised C17orf64 proteins, as also containing a conserved CHCT domain. Our data provide new structural insights into the CHD1 enzyme family.


Bioorganic & Medicinal Chemistry | 2015

A peptide affinity reagent for isolating an intact and catalytically active multi-protein complex from mammalian cells

Hinnerk Saathoff; Mattias Brofelth; Anne Trinh; Benjamin L. Parker; Daniel P. Ryan; Jason K. K. Low; Sarah R. Webb; Ana P. G. Silva; Joel P. Mackay; Nicholas E. Shepherd

We have developed an approach for directly isolating an intact multi-protein chromatin remodeling complex from mammalian cell extracts using synthetic peptide affinity reagent 4. FOG1(1-15), a short peptide sequence known to target subunits of the nucleosome remodeling and deacetylase (NuRD) complex, was joined via a 35-atom hydrophilic linker to the StreptagII peptide. Loading this peptide onto Streptactin beads enabled capture of the intact NuRD complex from MEL cell nuclear extract. Gentle biotin elution yielded the desired intact complex free of significant contaminants and in a form that was catalytically competent in a nucleosome remodeling assay. The efficiency of 4 in isolating the NuRD complex was comparable to other reported methods utilising recombinantly produced GST-FOG1(1-45).

Collaboration


Dive into the Ana P. G. Silva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel P. Ryan

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason W. Schmidberger

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerd A. Blobel

Children's Hospital of Philadelphia

View shared research outputs
Researchain Logo
Decentralizing Knowledge