Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana P. Tedim is active.

Publication


Featured researches published by Ana P. Tedim.


Antimicrobial Agents and Chemotherapy | 2010

Global Spread of the hylEfm Colonization-Virulence Gene in Megaplasmids of the Enterococcus faecium CC17 Polyclonal Subcluster

Ana R. Freitas; Ana P. Tedim; Carla Novais; Patricia Ruiz-Garbajosa; Guido Werner; Jenny A. Laverde-Gomez; Rafael Cantón; Luísa Peixe; Fernando Baquero; Teresa M. Coque

ABSTRACT Enterococcus faecium has increasingly been reported as a nosocomial pathogen since the early 1990s, presumptively associated with the expansion of a human-associated Enterococcus faecium polyclonal subcluster known as clonal complex 17 (CC17) that has progressively acquired different antibiotic resistance (ampicillin and vancomycin) and virulence (espEfm, hylEfm, and fms) traits. We analyzed the presence and the location of a putative glycoside hydrolase hylEfm gene among E. faecium strains obtained from hospitalized patients (255 patients; outbreak, bacteremic, and/or disseminated isolates from 23 countries and five continents; 1986 to 2009) and from nonclinical origins (isolates obtained from healthy humans [25 isolates], poultry [30], swine [90], and the environment [55]; 1999 to 2007). Clonal relatedness was established by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Plasmid analysis included determination of content and size (S1-PFGE), transferability (filter mating), screening of Rep initiator proteins (PCR), and location of vanA, vanB, ermB, and hylEfm genes (S1/I-CeuI hybridization). Most E. faecium isolates contained large plasmids (>150 kb) and showed variable contents of van, hylEfm, or espEfm. The hylEfm gene was associated with megaplasmids (170 to 375 kb) of worldwide spread (ST16, ST17, and ST18) or locally predominant (ST192, ST203, ST280, and ST412) ampicillin-resistant CC17 clones collected in the five continents since the early 1990s. All but one hylEfm-positive isolate belonged to the CC17 polyclonal subcluster. The presence of hylEfm megaplasmids among CC17 from Europe, Australia, Asia, and Africa since at least the mid-1990s was documented. This study further demonstrates the pandemic expansion of particular CC17 clones before acquisition of vancomycin resistance and putative virulence traits and describes the presence of megaplasmids in most of the contemporary E. faecium isolates with different origins.


Applied and Environmental Microbiology | 2015

Population Biology of Intestinal Enterococcus Isolates from Hospitalized and Nonhospitalized Individuals in Different Age Groups

Ana P. Tedim; Patricia Ruíz-Garbajosa; Jukka Corander; Concepción M. Rodríguez; Rafael Cantón; Rob J. L. Willems; Fernando Baquero; Teresa M. Coque

ABSTRACT The diversity of enterococcal populations from fecal samples from hospitalized (n = 133) and nonhospitalized individuals (n = 173) of different age groups (group I, ages 0 to 19 years; group II, ages 20 to 59 years; group III, ages ≥60 years) was analyzed. Enterococci were recovered at similar rates from hospitalized and nonhospitalized persons (77.44% to 79.77%) of all age groups (75.0% to 82.61%). Enterococcus faecalis and Enterococcus faecium were predominant, although seven other Enterococcus species were identified. E. faecalis and E. faecium (including ampicillin-resistant E. faecium) colonization rates in nonhospitalized persons were age independent. For inpatients, E. faecalis colonization rates were age independent, but E. faecium colonization rates (particularly the rates of ampicillin-resistant E. faecium colonization) significantly increased with age. The population structure of E. faecium and E. faecalis was determined by superimposing goeBURST and Bayesian analysis of the population structure (BAPS). Most E. faecium sequence types (STs; 150 isolates belonging to 75 STs) were linked to BAPS groups 1 (22.0%), 2 (31.3%), and 3 (36.7%). A positive association between hospital isolates and BAPS subgroups 2.1a and 3.3a (which included major ampicillin-resistant E. faecium human lineages) and between community-based ampicillin-resistant E. faecium isolates and BAPS subgroups 1.2 and 3.3b was found. Most E. faecalis isolates (130 isolates belonging to 58 STs) were grouped into 3 BAPS groups, BAPS groups 1 (36.9%), 2 (40.0%), and 3 (23.1%), with each one comprising widespread lineages. No positive associations with age or hospitalization were established. The diversity and dynamics of enterococcal populations in the fecal microbiota of healthy humans are largely unexplored, with the available knowledge being fragmented and contradictory. The study offers a novel and comprehensive analysis of enterococcal population landscapes and suggests that E. faecium populations from hospitalized patients and from community-based individuals differ, with a predominance of certain clonal lineages, often in association with elderly individuals, occurring in the hospital setting.


PLOS ONE | 2013

Microevolutionary events involving narrow host plasmids influences local fixation of vancomycin-resistance in Enterococcus populations.

Ana R. Freitas; Carla Novais; Ana P. Tedim; Maria Victoria Francia; Fernando Baquero; Luísa Peixe; Teresa M. Coque

Vancomycin-resistance in enterococci (VRE) is associated with isolates within ST18, ST17, ST78 Enterococcus faecium (Efm) and ST6 Enterococcus faecalis (Efs) human adapted lineages. Despite of its global spread, vancomycin resistance rates in enterococcal populations greatly vary temporally and geographically. Portugal is one of the European countries where Tn1546 (vanA) is consistently found in a variety of environments. A comprehensive multi-hierarchical analysis of VRE isolates (75 Efm and 29 Efs) from Portuguese hospitals and aquatic surroundings (1996–2008) was performed to clarify the local dynamics of VRE. Clonal relatedness was established by PFGE and MLST while plasmid characterization comprised the analysis of known relaxases, rep initiator proteins and toxin-antitoxin systems (TA) by PCR-based typing schemes, RFLP comparison, hybridization and sequencing. Tn1546 variants were characterized by PCR overlapping/sequencing. Intra- and inter-hospital dissemination of Efm ST18, ST132 and ST280 and Efs ST6 clones, carrying rolling-circle (pEFNP1/pRI1) and theta-replicating (pCIZ2-like, Inc18, pHTβ-like, two pRUM-variants, pLG1-like, and pheromone-responsive) plasmids was documented. Tn1546 variants, mostly containing ISEf1 or IS1216, were located on plasmids (30–150 kb) with a high degree of mosaicism and heterogeneous RFLP patterns that seem to have resulted from the interplay between broad host Inc18 plasmids (pIP501, pRE25, pEF1), and narrow host RepA_N plasmids (pRUM, pAD1-like). TAs of Inc18 (ω-ε-ζ) and pRUM (Axe-Txe) plasmids were infrequently detected. Some plasmid chimeras were persistently recovered over years from different clonal lineages. This work represents the first multi-hierarchical analysis of VRE, revealing a frequent recombinatorial diversification of a limited number of interacting clonal backgrounds, plasmids and transposons at local scale. These interactions provide a continuous process of parapatric clonalization driving a full exploration of the local adaptive landscape, which might assure long-term maintenance of resistant clones and eventually fixation of Tn1546 in particular geographic areas.


Frontiers in Microbiology | 2016

Co-diversification of Enterococcus faecium Core Genomes and PBP5: Evidences of pbp5 Horizontal Transfer

Carla Novais; Ana P. Tedim; Val F. Lanza; Ana R. Freitas; Eduarda Silveira; Ricardo Escada; Adam P. Roberts; Mohammed Al-Haroni; Fernando Baquero; Luísa Peixe; Teresa M. Coque

Ampicillin resistance has greatly contributed to the recent dramatic increase of a cluster of human adapted Enterococcus faecium lineages (ST17, ST18, and ST78) in hospital-based infections. Changes in the chromosomal pbp5 gene have been associated with different levels of ampicillin susceptibility, leading to protein variants (designated as PBP5 C-types to keep the nomenclature used in previous works) with diverse degrees of reduction in penicillin affinity. Our goal was to use a comparative genomics approach to evaluate the relationship between the diversity of PBP5 among E. faecium isolates of different phylogenomic groups as well as to assess the pbp5 transferability among isolates of disparate clonal lineages. The analyses of 78 selected E. faecium strains as well as published E. faecium genomes, suggested that the diversity of pbp5 mirrors the phylogenomic diversification of E. faecium. The presence of identical PBP5 C-types as well as similar pbp5 genetic environments in different E. faecium lineages and clones from quite different geographical and environmental origin was also documented and would indicate their horizontal gene transfer among E. faecium populations. This was supported by experimental assays showing transfer of large (≈180–280 kb) chromosomal genetic platforms containing pbp5 alleles, ponA (transglycosilase) and other metabolic and adaptive features, from E. faecium donor isolates to suitable E. faecium recipient strains. Mutation profile analysis of PBP5 from available genomes and strains from this study suggests that the spread of PBP5 C-types might have occurred even in the absence of a significant ampicillin resistance phenotype. In summary, genetic platforms containing pbp5 sequences were stably maintained in particular E. faecium lineages, but were also able to be transferred among E. faecium clones of different origins, emphasizing the growing risk of further spread of ampicillin resistance in this nosocomial pathogen.


Antimicrobial Agents and Chemotherapy | 2015

Streptococcus gallolyticus subsp. gallolyticus from Human and Animal Origins: Genetic Diversity, Antimicrobial Susceptibility, and Characterization of a Vancomycin-Resistant Calf Isolate Carrying a vanA-Tn1546-Like Element

Beatriz Romero-Hernández; Ana P. Tedim; José Francisco Sánchez-Herrero; Pablo Librado; Julio Rozas; Gloria Muñoz; Fernando Baquero; Rafael Cantón; Rosa del Campo

ABSTRACT The aim of this work was to characterize the antibiotic susceptibility and genetic diversity of 41 Streptococcus gallolyticus subsp. gallolyticus isolates: 18 isolates obtained from animals and 23 human clinical isolates. Antibiotic susceptibility was determined by the semiautomatic Wider system and genetic diversity by pulsed-field gel electrophoresis (PFGE) with SmaI. Animal isolates grouped separately in the PFGE analysis, but no statistical differences in antimicrobial resistance were found between the two groups. The LMG 17956 sequence type 28 (ST28) strain recovered from the feces of a calf exhibited high levels of resistance to vancomycin and teicoplanin (MIC, ≥256 mg/liter). Its glycopeptide resistance mechanism was characterized by Southern blot hybridization and a primer-walking strategy, and finally its genome, determined by whole-genome sequencing, was compared with four closely related S. gallolyticus subsp. gallolyticus genomes. Hybridization experiments demonstrated that a Tn1546-like element was integrated into the bacterial chromosome. In agreement with this finding, whole-genome sequencing confirmed a partial deletion of the vanY-vanZ region and partial duplication of the vanH gene. The comparative genomic analyses revealed that the LMG 17956 ST28 strain had acquired an unusually high number of transposable elements and had experienced extensive chromosomal rearrangements, as well as gene gain and loss events. In conclusion, S. gallolyticus subsp. gallolyticus isolates from animals seem to belong to lineages separate from those infecting humans. In addition, we report a glycopeptide-resistant isolate from a calf carrying a Tn1546-like element integrated into its chromosome.


Journal of Antimicrobial Chemotherapy | 2017

Long-term clonal dynamics of Enterococcus faecium strains causing bloodstream infections (1995–2015) in Spain

Ana P. Tedim; Patricia Ruíz-Garbajosa; Maria Concepción Rodríguez; Mercedes Rodríguez-Baños; Val F. Lanza; Laura Derdoy; Gonzalo Cárdenas Zurita; Elena Loza; Rafael Cantón; Fernando Baquero; Teresa M. Coque

Objectives To investigate the population structure of Enterococcus faecium causing bloodstream infections (BSIs) in a tertiary Spanish hospital with low glycopeptide resistance, and to enhance our knowledge of the dynamics of emergence and spread of high-risk clonal complexes. Methods All available E. faecium causing BSIs (n = 413) in our hospital (January 1995–May 2015) were analysed for antibiotic susceptibility (CLSI), putative virulence traits (PCR, esp, hylEfm) and clonal relationship (SmaI-PFGE, MLST evaluated by goeBURST and BAPS). Results The increased incidence of BSIs caused by enterococci [2.3‰ of attended patients (inpatients and outpatients) in 1996 to 3.0‰ in 2014] significantly correlated with the increase in BSIs caused by E. faecium (0.33‰ of attended patients in 1996 to 1.3‰ in 2014). The BSIs Enterococcus faecalis:E. faecium ratio changed from 5:1 in 1996 to 1:1 in 2014. During the last decade an increase in E. faecium BSIs episodes in cancer patients (10.9% in 1995–2005 and 37.1% in 2006–15) was detected. Ampicillin-susceptible E. faecium (ASEfm; different STs/BAPS) and ampicillin-resistant E. faecium (AREfm; ST18/ST17-BAPS 3.3a) isolates were recovered throughout the study. Successive waves of BAPS 2.1a-AREfm (ST117, ST203 and ST80) partially replaced ASEfm and ST18-AREfm since 2006. Conclusions Different AREfm clones (belonging to BAPS 2.1a and BAPS 3.3a) consistently isolated during the last decade from BSIs might be explained by a continuous and dense colonization (favouring both invasion and cross-transmission) of hospitalized patients. High-density colonization by these clones is probably enhanced in elderly patients by heavy and prolonged antibiotic exposure, particularly in oncological patients.


Journal of Antimicrobial Chemotherapy | 2018

Distribution of putative virulence markers in Enterococcus faecium: towards a safety profile review

Ana R. Freitas; Ana P. Tedim; Carla Novais; Teresa M. Coque; Luísa Peixe

Objectives The criteria for identification of Enterococcus faecium (Efm) with the ability to cause human infections are currently being debated by the European Food Safety Authority (EFSA). Strains that have an MIC of ampicillin of ≤ 2 mg/L and lack IS16/esp/hyl genes should be regarded as safe for use as feed additives in animal nutrition, despite the lack of knowledge about putative virulence marker (PVM) distribution in community Efm. We analysed the distribution of major PVM and ampicillin phenotypes in large Efm collections to investigate further the safety of strains from a public health perspective. Methods Thirty-three PVM were assessed by PCR/sequencing among clonally disparate Efm (n = 328; 1986-2015) from different origins. We analysed ampicillin susceptibility (Etest/broth microdilution) according to EUCAST guidelines, clonal relationship (MLST) and genomic location of PVM (S1-PFGE/hybridization). Results Infection-derived Efm were more enriched in PVM and the increase in ampicillin MIC was positively correlated with an enrichment in different PVM. PVM coding for surface (esp/sgrA/ecbA/complete acm) and pili proteins, or others enhancing colonization (hyl/ptsD/orf1481) or plasticity (IS16), were strongly associated with clinical Efm (mostly clade A1), but also observed in clades A2/B at different rates. ptsD was a good marker of ampicillin-resistant Efm. ptsD, IS16, orf1481, sgrA and hospital variants of complete pili gene clusters are proposed as markers to assess the safety of Efm strains. Conclusions Our study expands on the distribution of PVM in diverse Efm lineages and demonstrates the enrichment in infection-derived strains of PVM not previously included in EFSAs list of Efm safety criteria. The evidence of relevant Efm infection markers can impact the risk assessment of Efm strains in different public health contexts.


Genome Announcements | 2017

Complete Genome Sequences of Isolates of Enterococcus faecium Sequence Type 117, a Globally Disseminated Multidrug-Resistant Clone

Ana P. Tedim; Val F. Lanza; Marina Manrique; Eduardo Pareja; Patricia Ruiz-Garbajosa; Rafael Cantón; Fernando Baquero; Teresa M. Coque; Raquel Tobes

ABSTRACT The emergence of nosocomial infections by multidrug-resistant sequence type 117 (ST117) Enterococcus faecium has been reported in several European countries. ST117 has been detected in Spanish hospitals as one of the main causes of bloodstream infections. We analyzed genome variations of ST117 strains isolated in Madrid and describe the first ST117 closed genome sequences.


Clinical Microbiology and Infection | 2016

The rise of ampicillin-resistant Enterococcus faecium high-risk clones as a frequent intestinal colonizer in oncohaematological neutropenic patients on levofloxacin prophylaxis: a risk for bacteraemia?

Ana María Sánchez-Díaz; C. Cuartero; J.D. Rodríguez; S. Lozano; J.M. Alonso; Mario Rodríguez-Domínguez; Ana P. Tedim; R. del Campo; Juan Antonio López; Rafael Cantón; Patricia Ruiz-Garbajosa

Levofloxacin extended prophylaxis (LEP), recommended in oncohaematological neutropenic patients to reduce infections, might select resistant bacteria in the intestine acting as a source of endogenous infection. In a prospective observational study we evaluated intestinal emergence and persistence of ampicillin-resistant Enterococcus faecium (AREfm), a marker of hospital adapted high-risk clones. AREfm was recovered from the faeces of 52 patients with prolonged neutropenia after chemotherapy, at admission (Basal), during LEP, and twice weekly until discharge (Pos-LEP). Antibiotic susceptibility, virulence traits and population structure (pulsed-field gel electrophoresis and multilocus sequence typing) were determined and compared with bacteraemic isolates. Gut enterococcal population was monitored using a quantitative PCR quantification approach. AREfm colonized 61.4% of patients (194/482 faecal samples). Sequential AREfm acquisition (25% Basal, 36.5% LEP, 50% Pos-LEP) and high persistent colonization rates (76.9-89.5%) associated with a decrease in clonal diversity were demonstrated. Isolates were clustered into 24 PFGE-patterns within 13 sequence types, 95.8% of them belonging to hospital-associated Bayesian analysis of population structure subgroups 2.1a and 3.3a. Levofloxacin resistance and high-level streptomycin resistance were a common trait of these high-risk clones. AREfm-ST117, the most persistent clone, was dominant (60.0% isolates, 32.6% patients). It presented esp gene and caused 18.2% of all bacteraemia episodes in 21% of patients previously colonized by this clone. In AREfm-colonized patients, intestinal enrichment in the E. faecium population with a decline in total bacterial load was observed. AREfm intestinal colonization increases during hospital stay and coincides with enterococci population enrichment in the gut. Dominance and intestinal persistence of the ST117 clone might increase the risk of bacteraemia.


Diagnostic Microbiology and Infectious Disease | 2018

Emergence and dissemination of colistin-resistant Klebsiella pneumoniae isolates expressing OXA-48 plus CTX-M-15 in patients not previously treated with colistin in a Spanish university hospital

Hugo Barragán-Prada; Paula Ruiz-Hueso; Ana P. Tedim; Fernando González-Candelas; Juan Carlos Galán; Rafael Cantón; María-Isabel Morosini

Dissemination of multidrug-resistant Klebsiella pneumoniae in the hospital environment represents a primary target of resistance containment and stewardship programs. At present, polymyxins, mostly in combination, exemplify a last-resort alternative. Colistin-resistant K. pneumoniae isolates harboring OXA-48 plus CTX-M-15 (n = 21) with the simultaneous colistin-susceptible counterparts (n = 9) were recovered from 14 hospitalized patients (January 2014-January 2015) admitted in different wards. In most cases, patients had not previously received colistin. Genetic relatedness experiments demonstrated that 93% (28/30) of isolates belonged to the ST11 high-risk clone. Heteroresistance and the fitness cost of colistin resistance were addressed in susceptible and resistant isolates as well as in in vitro-obtained stable mutants, and results appeared to be strain dependent. Whole genome sequencing demonstrated molecular changes in pmrA, pmrB, and mgrB genes. Plasmid-mediated colistin resistance genes were not found. Colistin resistance in multidrug-resistant K. pneumoniae isolates should be continuously monitored to detect its potential emergence, even in patients not previously exposed to colistin.

Collaboration


Dive into the Ana P. Tedim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carla Novais

Fernando Pessoa University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Val F. Lanza

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge