Ana P. Teixeira
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ana P. Teixeira.
Biotechnology Advances | 2009
Ana P. Teixeira; Rui Oliveira; Paula M. Alves; Manuel J.T. Carrondo
In recent years, much attention has been directed towards the development of global methods for on-line process monitoring, especially since the Food and Drug Administration (FDA) launched the Process Analytical Technology (PAT) guidance, stimulating biopharmaceutical companies to update their monitoring tools to ensure a pre-defined final product quality. The ideal technologies for biopharmaceutical processes should operate in situ, be non-invasive and generate on-line information about multiple key bioprocess and/or metabolic variables. A wide range of spectroscopic techniques based on in situ probes have already been tested in mammalian cell cultures, such as near infrared (NIR), mid infrared (MIR), 2D fluorescence and dielectric capacitance spectroscopy; similarly, the electronic nose technique based on chemical array sensors has been tested for in situ off-gas analysis of mammalian cell cultures. All these methods provide series of spectra, from which meaningful information must be extracted. In this sense, data mining techniques such as principal components regression (PCR), partial least squares (PLS) or artificial neural networks (ANN) have been applied to handle the dense flow of data generated from the real-time process analyzers. Furthermore, the implementation of feedback control methods would help to improve process performance and ultimately ensure reproducibility. This review discusses the suitability of several spectroscopic techniques coupled with chemometric methods for improved monitoring and control of mammalian cell processes.
Biotechnology and Bioengineering | 2009
Ana P. Teixeira; Carla A.M. Portugal; Nuno Carinhas; João M. Dias; João P. Crespo; Paula M. Alves; Manuel J.T. Carrondo; Rui Oliveira
The main objective of the present study was to investigate the use of in situ 2D fluorometry for monitoring key bioprocess variables in mammalian cell cultures, namely the concentration of viable cells and the concentration of recombinant proteins. All studies were conducted using a recombinant Baby Hamster Kidney (BHK) cell line expressing a fusion glycoprotein IgG1‐IL2 cultured in batch and fed‐batch modes. It was observed that the intensity of fluorescence signals in the excitation/emission wavelength range of amino acids, vitamins and NAD(P)H changed along culture time, although the dynamics of single fluorophors could not be correlated with the dynamics of the target state variables. Therefore, multivariate chemometric modeling was adopted as a calibration methodology. 2D fluorometry produced large volumes of redundant spectral data, which were first filtered by principal components analysis (PCA). Then, a partial least squares (PLS) regression was applied to correlate the reduced fluorescence maps with the target state variables. Two validation strategies were used to evaluate the predictive capacity of the developed PLS models. Accurate estimations of viable cells density (r2 = 0.95; 99.2% of variance captured in the training set; r2 = 0.91; 97.7% of variance captured in the validation set) and of glycoprotein concentration (r2 = 0.99 and 99.7% of variance captured in the training set; r2 = 0.99 and 99.3% of variance captured in the validation set) were obtained over a wide range of reactor operation conditions. The results presented herein confirm that 2D fluorometry constitutes a reliable methodology for on‐line monitoring of viable cells and recombinant protein concentrations in mammalian cell cultures. Biotechnol. Bioeng. 2009;102: 1098–1106.
Biotechnology and Bioengineering | 2013
Nuno Carinhas; Tiago M. Duarte; Laura Barreiro; Manuel J.T. Carrondo; Paula M. Alves; Ana P. Teixeira
Chinese hamster ovary (CHO) cells are preferred hosts for the production of recombinant biopharmaceuticals. Efforts to optimize these bioprocesses have largely relied on empirical experience and our knowledge of cellular behavior in culture is incomplete. More recently, comprehensive investigations of metabolic network operation have started to be used to uncover traits associated with optimal growth and recombinant protein production. In this work, we used 1H‐nuclear magnetic resonance (1H‐NMR) to analyze the supernatants of glutamine‐synthetase (GS)‐CHO cell clones expressing variable amounts of an IgG4 under control and butyrate‐treated conditions. Exometabolomic data revealed accumulation of several metabolic by‐products, indicating inefficiencies at different metabolic nodes. These data were contextualized in a detailed network and the cellular fluxomes estimated through metabolic flux analysis. This approach allowed comparing metabolic activity across different clones, growth phases and culture conditions, in particular the efficiency pertaining to carbon lost to glycerol and lactate accumulation and the characteristic nitrogen metabolism involving high asparagine and serine uptake rates. Importantly, this study shows that early butyrate treatment has a marked effect on sustaining high nutrient consumption along culture time, being more pronounced during the stationary phase when extra energy generation and biosynthetic activity is fueled to increase IgG formation. Collectively, the information generated contributes to deepening our understanding of CHO cells metabolism in culture, facilitating future design of improved bioprocesses. Biotechnol. Bioeng. 2013;110: 3244–3257.
Toxicology in Vitro | 2011
Sofia B. Leite; Ana P. Teixeira; Joana P. Miranda; Rui M. Tostões; João J. Clemente; Marcos F.Q. Sousa; Manuel J.T. Carrondo; Paula M. Alves
During the last years an increasing number of in vitro models have been developed for drug screening and toxicity testing. Primary cultures of hepatocytes are, by far, the model of choice for those high-throughput studies but their spontaneous dedifferentiation after some time in culture hinders long-term studies. Thus, novel cell culture systems allowing extended hepatocyte maintenance and more predictive long term in vitro studies are required. It has been shown that hepatocytes functionality can be improved and extended in time when cultured as 3D-cell aggregates in environmental controlled stirred bioreactors. In this work, aiming at further improving hepatocytes functionality in such 3D cellular structures, co-cultures with fibroblasts were performed. An inoculum concentration of 1.2×10(5) cell/mL and a 1:2 hepatocyte:mouse embryonic fibroblast ratio allowed to improve significantly the albumin secretion rate and both ECOD (phase I) and UGT (phase II) enzymatic activities in 3D co-cultures, as compared to the routinely used 2D hepatocyte monocultures. Significant improvements were also observed in relation to 3D monocultures of hepatocytes. Furthermore, hepatocytes were able to respond to the addition of beta-Naphtoflavone by increasing ECOD activity showing CYP1A inducibility. The dependence of CYP activity on oxygen concentration was also observed. In summary, the improved hepatocyte specific functions during long term incubation of 3D co-cultures of hepatocytes with fibroblasts indicate that this system is a promising in vitro model for long term toxicological studies.
Expert Review of Vaccines | 2013
Fabiana Fernandes; Ana P. Teixeira; Nuno Carinhas; Manuel J.T. Carrondo; Paula M. Alves
Virus-like particles (VLPs) are multiprotein structures that resemble the conformation of native viruses but lack a viral genome, potentiating their application as safer and cheaper vaccines. The production of VLPs has been strongly linked with the use of insect cells and the baculovirus expression vector system, especially those particles composed of two or more structural viral proteins. In fact, this expression platform has been extensively improved over the years to address the challenges of coexpression of multiple proteins and their proper assembly into complexes in the same cell. In this article, the role of insect cell technology in the development and production of complex VLPs is overviewed; recent achievements, current bottlenecks and future trends are also highlighted.
Frontiers in Neuroenergetics | 2011
Ana I. Amaral; Ana P. Teixeira; Bjørn I. Håkonsen; Ursula Sonnewald; Paula M. Alves
Metabolic models have been used to elucidate important aspects of brain metabolism in recent years. This work applies for the first time the concept of isotopic transient 13C metabolic flux analysis (MFA) to estimate intracellular fluxes in primary cultures of astrocytes. This methodology comprehensively explores the information provided by 13C labeling time-courses of intracellular metabolites after administration of a 13C-labeled substrate. Cells were incubated with medium containing [1-13C]glucose for 24 h and samples of cell supernatant and extracts collected at different time points were then analyzed by mass spectrometry and/or high performance liquid chromatography. Metabolic fluxes were estimated by fitting a carbon labeling network model to isotopomer profiles experimentally determined. Both the fast isotopic equilibrium of glycolytic metabolite pools and the slow labeling dynamics of TCA cycle intermediates are described well by the model. The large pools of glutamate and aspartate which are linked to the TCA cycle via reversible aminotransferase reactions are likely to be responsible for the observed delay in equilibration of TCA cycle intermediates. Furthermore, it was estimated that 11% of the glucose taken up by astrocytes was diverted to the pentose phosphate pathway. In addition, considerable fluxes through pyruvate carboxylase [PC; PC/pyruvate dehydrogenase (PDH) ratio = 0.5], malic enzyme (5% of the total pyruvate production), and catabolism of branched-chained amino acids (contributing with ∼40% to total acetyl-CoA produced) confirmed the significance of these pathways to astrocytic metabolism. Consistent with the need of maintaining cytosolic redox potential, the fluxes through the malate–aspartate shuttle and the PDH pathway were comparable. Finally, the estimated glutamate/α-ketoglutarate exchange rate (∼0.7 μmol mg prot−1 h−1) was similar to the TCA cycle flux. In conclusion, this work demonstrates the potential of isotopic transient MFA for a comprehensive analysis of energy metabolism.
BMC Systems Biology | 2011
Nuno Carinhas; Vicente Bernal; Ana P. Teixeira; Manuel J.T. Carrondo; Paula M. Alves; Rui Oliveira
BackgroundStoichiometric models constitute the basic framework for fluxome quantification in the realm of metabolic engineering. A recurrent bottleneck, however, is the establishment of consistent stoichiometric models for the synthesis of recombinant proteins or viruses. Although optimization algorithms for in silico metabolic redesign have been developed in the context of genome-scale stoichiometric models for small molecule production, still rudimentary knowledge of how different cellular levels are regulated and phenotypically expressed prevents their full applicability for complex product optimization.ResultsA hybrid framework is presented combining classical metabolic flux analysis with projection to latent structures to further link estimated metabolic fluxes with measured productivities. We first explore the functional metabolic decomposition of a baculovirus-producing insect cell line from experimental data, highlighting the TCA cycle and mitochondrial respiration as pathways strongly associated with viral replication. To reduce uncertainty in metabolic target identification, a Monte Carlo sampling method was used to select meaningful associations with the target, from which 66% of the estimated fluxome had to be screened out due to weak correlations and/or high estimation errors. The proposed hybrid model was then validated using a subset of preliminary experiments to pinpoint the same determinant pathways, while predicting the productivity of independent cultures.ConclusionsOverall, the results indicate our hybrid metabolic flux analysis framework is an advantageous tool for metabolic identification and quantification in incomplete or ill-defined metabolic networks. As experimental and computational solutions for constructing comprehensive global cellular models are in development, the contribution of hybrid metabolic flux analysis should constitute a valuable complement to current computational platforms in bridging the metabolic state with improved cell culture performance.
Current Opinion in Biotechnology | 2014
Daniel A.M. Pais; Manuel J.T. Carrondo; Paula M. Alves; Ana P. Teixeira
Protein biopharmaceuticals are mainly produced in mammalian cells which can perform human-like post-translational modifications crucial to protein function. Subject to high variability, these critical quality attributes should be monitored and controlled during the manufacturing process. However, the large time requirements for analysis have been a bottleneck. Recent advances towards automated and high-throughput techniques, combined with multivariate data analysis, are increasingly providing relevant process knowledge in near real-time. New or re-designed analytical tools suited for monitoring product quality are starting to fit in this landscape. Moreover, omics technologies are expanding our understanding of how intracellular mechanisms and the extracellular milieu influence protein quality and quantity, reshaping the adoption of Process Analytical Technology (PAT) and Quality by Design (QbD) in the biopharmaceutical industry.
Trends in Biotechnology | 2012
Nuno Carinhas; Rui Oliveira; Paula M. Alves; Manuel J.T. Carrondo; Ana P. Teixeira
A central concern of biopharmaceutical R&D is the production of sufficient quantities of recombinant products from manufacturing processes based on animal cell culture. The way in which bioprocess researchers have addressed this question experienced a tremendous shift over the years, progressing from almost empirical to more rational approaches. A step further is the application of systems biotechnology: recent technological advances for large-scale cell state characterization and creative methods for host cell modeling are becoming crucial for next-generation bioprocess optimization. Here we provide an overview of the main trends towards this goal, with a focus on metabolic models as central scaffolds for data integration and prediction of bioprocess outcomes.
Biotechnology and Bioengineering | 2011
Ana P. Teixeira; Tiago M. Duarte; Manuel J.T. Carrondo; Paula M. Alves
In this work, synchronous fluorescence spectroscopy (SFS) is evaluated as a new tool for real‐time bioprocess monitoring of animal cell cultures. This technique presents several advantages over the traditional two‐dimensional (2D) fluorometry since it provides data on various fluorescent compounds in a single spectrum, showing improved peak resolution and recording speed. Bioreactor cultures of three monoclonal antibody‐producing CHO cell lines were followed in situ by both 2D and synchronous fluorometry techniques. The time profiles of the main spectral features in each data type present some differences, but principal component analysis indicated both as containing enough information to distinguish the cultures. Partial least squares regression models were then independently developed for viable cell density and antibody levels on the basis of the different fluorescence signals recorded, hiding half of the dataset for subsequent validation purposes. Regardless of the signal used, model predictions fit very well the off‐line measurements; still, the synchronous spectra collected at a wavelength difference of 20 nm allowed comparable and superior performances for cell density and antibody titer, respectively, with validation accuracies higher than 91%. Therefore, SFS compares favorably with the traditional 2D approach, becoming an improved, faster option for real‐time monitoring of cells and product titer over culture time. The readiness in data acquisition facilitates the design of process control strategies meeting the requirements of a PAT application. Biotechnol. Bioeng. 2011; 108:1852–1861.